题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

输入输出格式

输入格式:

INPUT: (file grass.in)

The first line of input contains N and M, giving the number of fields
and the number of one-way paths (1 <= N, M <= 100,000).

The following M lines each describe a one-way cow path. Each line
contains two distinct field numbers X and Y, corresponding to a cow path
from X to Y. The same cow path will never appear more than once.

输入:

第一行:草场数n,道路数m。

以下m行,每行x和y表明有x到y的单向边,不会有重复的道路出现。

输出格式:

OUTPUT: (file grass.out)

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

输出:

一个数,逆行一次最多可以走几个草场。

输入输出样例

输入样例#1:

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7
输出样例#1:

6

说明

SOLUTION NOTES:

Here is an ASCII drawing of the sample input:

v---3-->6
7 | \ |
^\ v \|
| \ 1 |
| | v
| v 5
4<--2---^

Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling

backwards on the path between 5 and 3. When she arrives at 3 she

cannot reach 6 without following another backwards path.

solution:

  本题Tarjan缩点+分层图最短路。

  一个环上的点显然都是能互相到达的,所以我们先缩点,并记录每个强联通分量的点个数,对于逆行1次的情况,只需要建分层图就好了,由于缩点后的图是DAG,于是我们就可以拓扑排序去解决第二问,当然也可以建边跑最长路咯。

代码:

/*Code by 520 -- 9.5*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,bl[N],scc,dfn[N],low[N],tot,stk[N],top;
int to[N],net[N],h[N],cnt,w[N],dis[N],siz[N],f[N];
bool ins[N],vis[N];
struct node{
int u,v;
}e[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void tarjan(int u){
dfn[u]=low[u]=++tot,stk[++top]=u,ins[u]=;
for(RE int i=h[u];i;i=net[i])
if(!dfn[to[i]]) tarjan(to[i]),low[u]=min(low[u],low[to[i]]);
else if(ins[to[i]]) low[u]=min(low[u],dfn[to[i]]);
if(dfn[u]==low[u]){
++scc;
while(stk[top+]!=u)
bl[stk[top]]=scc,siz[scc]++,ins[stk[top--]]=;
}
} queue<int>q;
int main(){
n=gi(),m=gi();
For(i,,m) e[i].u=gi(),e[i].v=gi(),add(e[i].u,e[i].v);
For(i,,n) if(!dfn[i]) tarjan(i);
memset(h,,sizeof(h)),cnt=;
For(i,,m) if(bl[e[i].u]!=bl[e[i].v]) {
add(bl[e[i].u],bl[e[i].v]),w[cnt]=siz[bl[e[i].u]];
add(bl[e[i].u]+scc,bl[e[i].v]+scc),w[cnt]=siz[bl[e[i].u]];
add(bl[e[i].v],bl[e[i].u]+scc),w[cnt]=siz[bl[e[i].v]];
}
memset(dis,,sizeof(dis));
q.push(bl[]),dis[bl[]]=;
while(!q.empty()){
RE int u=q.front();q.pop();vis[u]=;
for(RE int i=h[u];i;i=net[i])
if(dis[to[i]]<dis[u]+w[i]){
dis[to[i]]=dis[u]+w[i];
if(!vis[to[i]])vis[to[i]]=,q.push(to[i]);
}
}
cout<<dis[bl[]+scc];
return ;
}

P3119 [USACO15JAN]草鉴定Grass Cownoisseur的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  4. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路

    https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...

  7. [Luogu P3119] [USACO15JAN]草鉴定Grass Cownoisseur (缩点+图上DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3119 Solution 这题显然要先把缩点做了. 然后我们就可以考虑如何处理走反向边的问题. 像我这样的 ...

  8. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  9. [USACO15JAN]草鉴定Grass Cownoisseur(分层图+tarjan)

    [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of his cows ...

随机推荐

  1. day01_概念

    1 网络分类: 1 按照范围: - 局域网:范围很小的网络,如一间办公室,一个公司 - 城域网:大致城市范围内的网络,半径几公里到几十公里 - 广域网:比城域网范围更大的 2 网络衡量标准 1 传输速 ...

  2. 二级域名 cookie session 共享

    setcookie('login','12345',0,'/','.abc.com'); session_set_cookie_params(0,'/','.abc.com');session_sta ...

  3. 解决Eclipse Install New Software太慢的问题

    Eclipse -> Help -> Install New Software... 在出现的窗口点击Manage管理Available Software Sites 将所有URL中的&q ...

  4. opengl矩阵向量

    如何创建一个物体.着色.加入纹理,给它们一些细节的表现,但因为它们都还是静态的物体,仍是不够有趣.我们可以尝试着在每一帧改变物体的顶点并且重配置缓冲区从而使它们移动,但这太繁琐了,而且会消耗很多的处理 ...

  5. python基础教程:包的创建及导入

    包是一种通过用“带点号的模块名”来构造 Python 模块命名空间的方法. 例如,模块名 A.B 表示 A 包中名为 B 的子模块.正如模块的使用使得不同模块的作者不必担心彼此的全局变量名称一样,使用 ...

  6. idea_debug

    条件断点 快捷键 cmd + shift +f8 demo 表达式求值 注意,调试的时候,选中相应变量 alt + f8 demo set value (感觉会非常有用) 调试时直接改变变量的值,快捷 ...

  7. tomcat启动项目的时候不报错而且启动的很快

    最后发现是tomcat部署项目的时候,并没有将一部分文件复制到tomcat的目录下 方法 将没有添加的目录 Finish

  8. css忽略某一层的存在:pointer-events:none

    其实早知道这个属性,但是一直没有去研究过.今天正好在twitter看到这个词,就去研究了下,正好解决了目前遇到的一个小难题,所以分享下.嗯,其实这是个比较简单的CSS3属性. 在某个项目中,很多元素需 ...

  9. Netty源码分析第2章(NioEventLoop)---->第5节: 优化selector

    Netty源码分析第二章: NioEventLoop   第五节: 优化selector 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEv ...

  10. smash:一个类unix内核

    前言 每一个蹩脚的C++程序员都有一颗做操作系统内核的心.我从大学毕业开始就对操作系统内核感兴趣,将其看作是术之尽头,可惜那时候一直在无忧无虑的忙着玩网游,也就搁置了.随着时间的推移,逐渐就将其淡忘了 ...