Description

  

​   你有一个双端队列和 \(N\) 个数字,先按 \(1\) 到 \(N\) 的顺序每次从任意一端插入当前数字,再进行 \(N\) 次操作每次可以从两端弹出,求有多少种弹出序列满足第 \(K\) 位为 \(1\)

  

  ​ \(N \le 2000\)

  

    

  

Solution

  

​   考虑双端队列的样子,插入完成后,元素大小形象来看一定是一个"V"的形状,并且最低端是1。

  

​   再考虑符合要求的、合法的弹出序列的性质:

  

​   (1)首先第\(K\)个必须是1。

  

​   (2)前\(K-1\)个数,一定是两个或一个单调减的队列混合而成的。

  

​   (3)后\(N-K\)个数,其最大值应小于某一个(2)提到的单调队列的最小值。

  

​   一旦前\(K-1\)个数固定,最后剩下的就是一个单调的队列,取出方式有\(2^{N-K-1}\)种。

  

​   所以接下来要算出合法序列的前\(K-1\)个数有多少种情况。

  

​   设\(f_{i,j}\)表示已经确定了前\(1...i\)个数,且确定的数中最小值为\(j\),有多少种方案。

  

​   考虑从\(f_{i,j}\)转移到\(f_{i+1}\)。\(f_{i,j}\)代表着若干种符合\(j\)这个特征的长度为\(i\)的数列,不论这些数列的两个(或者一个)单调队列是怎么构成的,我们只需要看看它们能够在第\(i+1\)位填上什么数合法转移就好。

  

​   首先,下一位填\(1...j-1\)都是可行的。由于当前序列是合法序列,也就是说满足(3)。可以这样拆分出两个队列,使得一个队列的最小值是\(j\),而另一个队列专门用来满足(3)。那么将新的数接在前面那个队列后面,仍然是合法序列。所以有\(f_{i,j}\rightarrow f_{i+1,k}\;\;\;k<j\)

  

​   其次,如果要填大于\(j\)的数呢?只能填没出现过的、最大的那个数。例如\(n=7\),当前序列是7 6 3 2,只能填入5。如果填的是其他数如4,你会发现,4一定要是某一个队列的结尾,由于它不是未出现的数的最大的数,这意味着后\(N-K\)个数的数列有比它更大的,那么这个队列不满足(3)。考虑另一个队列能否满足,事实上是不可能的,因为最小值一定要是另一个队列的结尾(不然就不止2个队列了),它也不满足(3)。

  

​   所以有\(f_{i,j}\rightarrow f_{i+1,j}\)。这个转移有点神秘,它没有体现出任何\(j\)的变化,但它的确能表示,因为这一步转移相当于对每一个确切方案填了唯一确定的一个数,所以可以直接转移去对应特征的状态,也就是最小值仍然是\(j\)。

  

​   注意边界,那些\(j>n-i+1\)的\(f_{i,j}\)是不合法的,那些\(j=n-i+1\)的状态不可以用于第二类转移,因为没有空余的数可以填。

    

​   第一个转移用后缀和优化,复杂度是\(\mathcal O(n^2)\)。

  

​  

  

Code

  

#include <cstdio>
using namespace std;
const int N=2005,MOD=1e9+7;
int n,m;
int f[N];
void readData(){
scanf("%d%d",&n,&m);
}
void dp(){
f[n+1]=1;
int sum,last;
for(int i=1;i<m;i++){
sum=f[n-i+2];
for(int j=n-i+1;j>=2;j--){
(sum+=f[j])%=MOD;
if(j<=n-i+1)
f[j]=sum;
}
}
int ans=0;
for(int j=2;j<=n-(m-1)+1;j++) (ans+=f[j])%=MOD;
if(m==1) ans=1;
for(int i=1;i<=n-m-1;i++) (ans<<=1)%=MOD;
printf("%d\n",ans);
}
int main(){
readData();
dp();
return 0;
}

【ARC068F】Solitaire的更多相关文章

  1. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  2. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  3. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  4. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  5. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  6. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  7. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

  8. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

  9. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

随机推荐

  1. c#随机生成中文姓名

    为什么要自己写这个生成器呢?大家应该都有过为测试数据发愁的时候,我就是出于这样的原因. 尽管本次代码很少,但是还会有后续的生成器分享出来. 我代码底子还不是很好,希望各位同道能够发表意见,同是也欢迎大 ...

  2. 分享一篇IBN(Intent-based networking)调研报告

    IBN调研报告 背景 SDN(Software-defined network):最大特点在于具有松耦合的控制平面与数据平面.支持集中化的网络状态控制.实现底层网络设施对上层应用的透明.具有灵活的软件 ...

  3. Go单元测试注意事项及测试单个方法和整个文件的命令

    Go程序开发过程中免不了要对所写的单个业务方法进行单元测试,Go提供了 "testing" 包可以实现单元测试用例的编写,不过想要正确编写单元测试需要注意以下三点: Go文件名必须 ...

  4. Array.Copy 数据是克隆吗?

    偶然看到 Array.Copy 方法的时候,想到,它是否是克隆,又是否是深克隆. 做了一个测试 public class abc { public string hello; } [TestMetho ...

  5. 20162316刘诚昊 Java Queue的测试

    交慢了一步..

  6. 场景调研 persona

    1.姓名:王涛 2.年龄:22 3.收入:基本无收入 4.代表用户在市场上的比例和重要性:王涛为铁道学生.本软件的用户主要是学生和老师,尤其是广大的铁大学子,所以此典型用户的重要性不言而喻,而且比例相 ...

  7. 用java构造一个带层次的文件目录遍历器

    import java.util.List; import java.io.File; import java.util.ArrayList; public class IteratorUtil { ...

  8. Go going软件NABCD

    N  (Need 需求):gogoing项目目前打算做得是一个基于石家庄铁道大学在校大学生对于短期节假日出行旅游的指南.次关键的定义为“简单”.“简单”则体现在我们的软件使用简单.方便,以及界面的简洁 ...

  9. 在onResume()中调用getIntent()得不到Extra的问题

    之前 想做activity间的传值,注意 不是 startActivityforResult的那种, 在启动了多层activity再次启动activity想进入到singleTask的MainActi ...

  10. 经验分享(Android开发)

    以前对于Android开发一点了解都没有,当然,以前觉得是一件很高大上的事情,而且是我没有能力去做的工作,但是在这个小组合作开发Android后,我觉得我有了很大的进步,当然我的进步也是Android ...