BZOJ 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 464 Solved: 281
[Submit][Status][Discuss]
Description
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
Input
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
Output
对于每个询问,输出一行对应的答案。
Sample Input
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
Sample Output
4
8
8
8
HINT
对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9
Source
福建自古出神题……
如果存在一个集合,使得$[1,x]$内的数字都能被表示,新加入一个数$y$,那么会出现如下两种情况:
1. $y \leq x+1$,则新集合可以表示$[1,x+y]$内的所有数字。
2. $y \gt x+1$,则新集合表示的区间会产生“断裂”,即$x+1$依旧无法被表示,所以该集合的神秘数还是$x+1$。
基于以上分析,产生下面的算法,用以求一个给定集合的神秘数:
首先设$ans=1$,作为最初假象的神秘数,然后求出
\[get=\sum_{a_{i} \leq ans}a_{i}\]
那么如果$get \lt ans$,则$ans$就是神秘数,否则令$ans=get+1$,继续过程。
那么用可持久化线段树维护区间内权值范围和即可。
#include <bits/stdc++.h> inline char Char(void)
{
static const int siz = << ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int Int(void)
{
int ret = , neg = , c = Char(); for (; c < ; c = Char())
if (c == '-')neg ^= true; for (; c > ; c = Char())
ret = ret * + c - ''; return neg ? -ret : ret;
} const int mxn = ;
const int siz = ; int n, m, num[mxn], map[mxn], tot; int ls[siz], rs[siz], sm[siz], cnt, root[mxn]; void insert(int &t, int f, int l, int r, int p, int v)
{
t = ++cnt; ls[t] = ls[f];
rs[t] = rs[f];
sm[t] = sm[f] + v; if (l != r)
{
int mid = (l + r) >> ; if (p <= mid)
insert(ls[t], ls[f], l, mid, p, v);
else
insert(rs[t], rs[f], mid + , r, p, v);
}
} int query(int a, int b, int l, int r, int lt, int rt)
{
if (l == lt && r == rt)
return sm[a] - sm[b]; int mid = (l + r) >> ; if (rt <= mid)
return query(ls[a], ls[b], l, mid, lt, rt);
else if (lt > mid)
return query(rs[a], rs[b], mid + , r, lt, rt);
else
return query(ls[a], ls[b], l, mid, lt, mid) + query(rs[a], rs[b], mid + , r, mid + , rt);
} signed main(void)
{
n = Int(); for (int i = ; i <= n; ++i)
num[i] = map[i] = Int(); std::sort(map + , map + n + ); tot = std::unique(map + , map + n + ) - map; for (int i = ; i <= n; ++i)
num[i] = std::lower_bound(map + , map + tot, num[i]) - map,
insert(root[i], root[i - ], , tot, num[i], map[num[i]]); m = Int(); for (int i = ; i <= m; ++i)
{
int l = Int();
int r = Int(); int ans = , get, pos; while (true)
{
pos = std::upper_bound(map + , map + tot, ans) - map - ;
get = query(root[r], root[l - ], , tot, , pos);
if (get < ans)break;
else ans = get + ;
} printf("%d\n", ans);
}
}
@Author: YouSiki
BZOJ 4408: [Fjoi 2016]神秘数的更多相关文章
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...
- ●BZOJ 4408 [Fjoi 2016]神秘数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
- BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题
Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...
- 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 452 Solved: 273 [Submit][Stat ...
- [BZOJ4408][Fjoi 2016]神秘数
[BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...
- 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题
[BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...
随机推荐
- C#四则运算器(多态方法实现)
在上一节C#课上,我们学习了用类的继承的方式来做一个四则运算器,然而老师的代码在课上演示的效果并不理想,而且没有使用多态的思想实现,今天我们就来用多态的方式实现四则运算器. 1. 题目及要求 2. A ...
- Linux命令的那些事(三)
回顾linux命令那些事,前面大致总结了常用的Linux命令 回顾Linux命令那些事(一) clear/mkdir/rmdir/ls/rm/pwd/cd/touch/tree/man/--help ...
- 一个可以自由存取的onedriver
https://cittedu-my.sharepoint.com/personal/jostin_5gd_me/Documents/jostin
- GlusterFS分布式存储集群-1. 部署
参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...
- linux磁盘扩容日志
//针对ext4文件格式的操作系统(如CentOS6):// umount /dev/vdb e2fsck -f /dev/vdb resize2fs /dev/vdb mount /dev/vdb ...
- Scrum立会报告+燃尽图(Final阶段第二次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2481 项目地址:https://coding.net/u/wuyy694 ...
- 《JavaScript》字符转义
escape/unescape encodeURIComponent/decodeURIComponent encodeURI/decodeURI 转义函数会对一些 特殊字符进行转义编码 英文.数字. ...
- url传多值问题
使用url传值的特点是操作简单,虽然安全性低,但依然广泛运用. url传数据绑定的值: <a href='Default.aspx?id=<%#Eval("ID")%& ...
- Go going软件NABCD
N (Need 需求):gogoing项目目前打算做得是一个基于石家庄铁道大学在校大学生对于短期节假日出行旅游的指南.次关键的定义为“简单”.“简单”则体现在我们的软件使用简单.方便,以及界面的简洁 ...
- 第五次作业+4505B寝室队
1.需求分析: 作一个简单的MP3播放器,并能显示播放文件的路径. 2.设计思路: 用窗体设计播放器的界面,以市面上主流的播放器为标准,采用一个窗体的界面. 3.实现的功能: 第一是能播放MP3文件, ...