BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二
题意
给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\)。
题解
我们要把这个式子转换成多项式乘法的形式。
一个标准的多项式乘法是这样的:
\]
来看看原式:
\]
将a翻转得到a':
\]
调整求和指标:
\]
那么求出\(c_k\),之后取\(c\)的前\(n\)位,倒着输出即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <complex>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 1000005;
const double PI = acos(-1);
typedef complex<double> cp;
int len, ta[N], tb[N], res[N];
cp omg[N], inv[N];
void init(int n){
for(int i = 0; i < n; i++){
omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n));
inv[i] = conj(omg[i]);
}
}
void fft(cp *a, int n, cp *omg){
int lim = 0;
while((1 << lim) < n) lim++;
for(int i = 0; i < n; i++){
int t = 0;
for(int j = 0; j < lim; j++)
if(i >> j & 1) t |= 1 << (lim - j - 1);
if(i < t) swap(a[i], a[t]);
}
for(int l = 2; l <= n; l *= 2){
int m = l / 2;
for(cp *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
cp t = omg[n / l * i] * p[m + i];
p[m + i] = p[i] - t;
p[i] += t;
}
}
}
void multiply(){
static cp a[N], b[N];
for(int i = 0; i < len; i++)
a[i].real(ta[i]), b[i].real(tb[i]);
int n = 1;
while(n < 2 * len) n *= 2;
init(n);
fft(a, n, omg);
fft(b, n, omg);
for(int i = 0; i < n; i++)a[i] *= b[i];
fft(a, n, inv);
for(int i = 0; i < n; i++)
res[i] = floor(a[i].real() / n + 0.5);
}
int main(){
read(len);
for(int i = 0; i < len; i++)
read(ta[i]), read(tb[i]);
for(int i = 0, j = len - 1; i < j; i++, j--)
swap(ta[i], ta[j]);
multiply();
for(int i = len - 1; i >= 0; i--)
write(res[i]), enter;
return 0;
}
BZOJ 2194 快速傅立叶变换之二 | FFT的更多相关文章
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- BZOJ 2194 快速傅立叶之二 ——FFT
[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- [BZOJ]2194: 快速傅立叶之二
题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...
- 【刷题】BZOJ 2194 快速傅立叶之二
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj 2194: 快速傅立叶之二【NTT】
看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...
- 【BZOJ 2194】2194: 快速傅立叶之二(FFT)
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1273 Solved: 745 Description 请计算C[k]= ...
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
随机推荐
- 【探路者】Beta发布用户使用报告
用户数量:18 一.用户列表及评论. 用户序号 用户来源 用户下载软件途径 用户姓名 用户描述(信息) 使用次数 用户评价 1 张恩聚 QQ发送可运行jar包 周楠 吉林大学在读研究生 5 ...
- NEWBEE软件团队 人员分配情况及分数获得方式
人员分配: PM:李桐 王骜 dev:王骜 刘垚鹏 安康 林旭鹏 黄新越 test:黄伟龙 李桐 马佐霖 黄新越 注:黄新越为女生,不方便平时的交流,所以任务分配较为灵活,特分在两个组里. 评分 ...
- Thirteenth scrum meeting 2015/11/11
发布bug整理集结: 手机用户体验优化优化: (1)主界面和课程界面的字体规格以及界面结构不同 (2)课程图片的大小格式不统一,造成美观下降 ( 3 )按钮的位置不美观 平板用户体验: (1)Tab键 ...
- 面向对象OO第15次作业总结
面向对象OO第15次作业总结 1.论述测试与正确性论证的效果差异,比较其优缺点测试通过大量测试数据来覆盖测试代码,比较直观,优点在于知道测的是啥,特别直观,缺点在于很难覆盖所有情况.正确性论证从逻辑关 ...
- 团队项目-NABCD
用户需求分析与NABCD 模拟经营类(SIM)游戏:玩家模拟经营一家软件公司,平台初步定为Android. Need需求 任何一款游戏都要有自己的定位和目标群体,这些 iiMediaResearch数 ...
- WebService有什么用?
入门之前先简单介绍下WCF.在用WebService做开发时,很多人都不知道WCF和WebService之间的关系.实际上WCF包含了WebService,这是一个很强悍的通信技术应用框架.微软把.N ...
- 调研Android的开发环境的发展演变
在 知道要做基于移动端的项目实践时,我就选定了Android,回来的时候查了很多相关的知识,很多人都在问开发安卓软件,使用eclipse还是用 Android studio?其实,也没有一个准确的答案 ...
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- J2EE 13种技术规范
J2EE平台由一整套服务(种技术规范进行简单的描述(限于篇幅,这里只能进行简单的描述): 1.JDBC(Java Database Connectivity): JDBC API为访问不同的数据 ...
- mac上查找nginx安装位置
在终端输入: nginx -V 查看nginx版本及安装的本地位置 ngxin -v 查看nginx版本(此方法依然可以检测是否安装某一软件,如git,hg等)