【CS231N】7、卷积神经网络
一、疑问
1. assignments2
- 在代码文件FullyConnectedNets.ipynd 中,有代码如下:
# Test the affine_forward function
num_inputs = 2
input_shape = (4, 5, 6)
output_dim = 3
input_size = num_inputs * np.prod(input_shape)
weight_size = output_dim * np.prod(input_shape)
x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape), output_dim)
b = np.linspace(-0.3, 0.1, num=output_dim)
out, _ = affine_forward(x, w, b)
correct_out = np.array([[ 1.49834967, 1.70660132, 1.91485297],
[ 3.25553199, 3.5141327, 3.77273342]])
# Compare your output with ours. The error should be around 1e-9.
print 'Testing affine_forward function:'
print 'difference: ', rel_error(out, correct_out)
此处用np.prod和 np.linspace等一系列函数初始化权重w和x,与之前直接用np.random等函数想比略显复杂,如此初始化的好处是什么?
**A: **在这个代码模块里,最主要是为了测试前向传播函数是否实现正确,所以需要固定的权重和数据来得出结果,以和函数的输出进行对比。而之前随机生成的数据输出结果也是随机的,无法用于判定实现的前向传播函数是否正确。
- 当用多层FC网络过拟合50个样本时,如果网络层数越深,随机初始化权重时,所用的weight_scale应当越大点。
二、知识点
1. im2col操作
用矩阵乘法实现:卷积运算本质上就是在滤波器和输入数据的局部区域间做点积。卷积层的常用实现方式就是利用这一点,将卷积层的前向传播变成一个巨大的矩阵乘法:
- 输入图像的局部区域被im2col操作拉伸为列。比如,如果输入是[227x227x3],要与尺寸为11x11x3的滤波器以步长为4进行卷积,就取输入中的[11x11x3]数据块,然后将其拉伸为长度为11x11x3=363的列向量。重复进行这一过程,因为步长为4,所以输出的宽高为(227-11)/4+1=55,所以得到im2col操作的输出矩阵X_col的尺寸是[363x3025],其中每列是拉伸的感受野,共有55x55=3,025个。注意因为感受野之间有重叠,所以输入数据体中的数字在不同的列中可能有重复。
- 卷积层的权重也同样被拉伸成行。举例,如果有96个尺寸为[11x11x3]的滤波器,就生成一个矩阵W_row,尺寸为[96x363]。
- 现在卷积的结果和进行一个大矩阵乘np.dot(W_row, X_col)是等价的了,能得到每个滤波器和每个感受野间的点积。在我们的例子中,这个操作的输出是[96x3025],给出了每个滤波器在每个位置的点积输出。
- 结果最后必须被重新变为合理的输出尺寸[55x55x96]。
这个方法的缺点就是占用内存太多,因为在输入数据体中的某些值在X_col中被复制了多次。但是,其优点是矩阵乘法有非常多的高效实现方式,我们都可以使用(比如常用的BLAS API)。还有,同样的im2col思路可以用在汇聚操作中。
三、归一化层(Batch normalization)
**Q: **在神经网络训练开始前,都要对输入数据做一个归一化处理,那为什么需要归一化呢?
**A: **神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低;另外一方面,一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每次迭代都去学习适应不同的分布,这样将会大大降低网络的训练速度,这也正是为什么我们需要对数据都要做一个归一化预处理的原因。
1. 定义
批量归一化。让激活数据在训练开始前通过一个网络,网络处理数据使其服从标准高斯分布。使用了批量归一化的网络对于不好的初始值有更强的鲁棒性。
2. 优点
- BN解决了反向传播过程中的梯度问题(梯度消失和爆炸),同时使得不同scale的
整体更新步调更一致。在神经网络训练时遇到收敛速度很慢,或梯度爆炸等无法训练的状况时可以尝试BN来解决。另外,在一般使用情况下也可以加入BN来加快训练速度,提高模型精度。
- 减少坏初始化的影响;
- 加快模型的收敛速度;
- 可以用大些的学习率
- 能有效地防止过拟合。
3. 前向传播过程公式
4. 反向传播求导公式
5. 代码
sample_mean = K.mean(X, axis=-1, keepdims=True)#计算均值
sample_var = K.std(X, axis=-1, keepdims=True)#计算标准差
X_normed = (X - sample_mean) / (sample_var + self.epsilon)#归一化
out = self.gamma * X_normed + self.beta#重构变换
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
out = self.gamma * X_normed + self.beta 这个操作为“scale and shift”操作。为了让因训练所需而“刻意”加入的BN能够有可能还原最初的输入(即当
),从而保证整个network的capacity。(实际上BN可以看作是在原模型上加入的“新操作”,这个新操作很大可能会改变某层原来的输入。当然也可能不改变,不改变的时候就是“还原原来输入”。如此一来,既可以改变同时也可以保持原输入,那么模型的容纳能力(capacity)就提升了。)
当引入BN层,原始的数据分布可能会因此遭到破坏,从而导致网络的loss变大,则在反向传播中,可以使用梯度更新规则对参数gamma和beta进行更新,从而接用“scale and shift”操作,以求可能保持原输入的部分特征。
我们训练时使用一个minibatch的数据,因此可以计算均值和方差,但是预测时一次只有一个数据,所以均值方差都是0,那么BN层什么也不干,原封不动的输出。这肯定会用问题,因为模型训练时是进过处理的,但是测试时又没有,那么结果肯定不对。
解决的方法是使用训练的所有数据,也就是所谓的population上的统计。不过这需要训练完成之后在多出一个步骤。一种常见的办法就是基于momentum的指数衰减,这和低通滤波器类似。每次更新时把之前的值衰减一点点(乘以一个momentum,一般很大,如0.9,0.99),然后把当前的值加一点点进去(1-momentum)。
【CS231N】7、卷积神经网络的更多相关文章
- 『cs231n』卷积神经网络的可视化与进一步理解
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...
- 【cs231n】卷积神经网络
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...
- 『cs231n』卷积神经网络工程实践技巧_下
概述 计算加速 方法一: 由于计算机计算矩阵乘法速度非常快,所以这是一个虽然提高内存消耗但是计算速度显著上升的方法,把feature map中的感受野(包含重叠的部分,所以会加大内存消耗)和卷积核全部 ...
- 『cs231n』卷积神经网络工程实践技巧_上
概述 数据增强 思路:在训练的时候引入干扰,在测试的时候避免干扰. 翻转图片增强数据. 随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最 ...
- CS231n课程笔记翻译9:卷积神经网络笔记
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...
- Stanford CS231n实践笔记(课时14卷积神经网络详解 上)
本课我们主要来研究一个"浏览器中的卷积神经网络" 这只是一个展示项目,但是能够帮助直观地看到一些东西 地址:https://cs.stanford.edu/people/karpa ...
- CNN卷积神经网络在自然语言处理的应用
摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convol ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 卷积神经网络(CNN)模型结构
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...
- 卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...
随机推荐
- 分子量 (Molar Mass,ACM/ICPC Seoul 2005,UVa1586)
习题 3-3 分子量 (Molar Mass,ACM/ICPC Seoul 2005,UVa1586) 给出一种物质的分子式(不带括号),求分子量.本题中的分子式只包含4种原子,分别为C,H,O,N, ...
- Scala的映射和元组操作
映射和元组操作 构造Map // 构造一个不可变的MAP映射,类似与key -> value这样的组合叫做对偶 val score = Map("Jack" -> 12 ...
- MySQL配置主主及主从备份
原文:https://www.cnblogs.com/ahaii/p/6307648.html MySQL主从备份配置实例 场景: 1.主服务器192.168.0.225.从服务器192.168.0. ...
- 2017-2018-1 20155226 《信息安全系统设计基础》课下实践——实现mypwd
2017-2018-1 20155226 <信息安全系统设计基础>课下实践--实现mypwd 1 学习pwd命令 输入pwd命令 发现他是给出当前文件夹的绝对路径. 于是 man 1 pw ...
- sklearn常见分类器的效果比较
sklearn 是 python 下的机器学习库. scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果. 其功能非常强大,当然也有很多不足的地方,就比如说神经 ...
- 三层BP神经网络的python实现
这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络. 下面是运行演示函数的截图,你会发现预测的结果很惊人! 提示:运行演示函数的时候,可以尝试改变隐藏 ...
- Java类的加载的一个小问题
前言 之前写了一篇文章专门介绍了一下类的加载和对象的创建流程,然后收到了一个博友的疑问,觉得蛮好的,在这里和大家分享下. 博文地址:[Java基础]Java类的加载和对象创建流程的分析 疑问 类在加载 ...
- python的变量的命名规则以及定义
1.变量,指计算机中存储数据的空间 2.变量的命名方式:变量名 = 值 3.变量的命名规定(标识符的命名规定): 只能由数字,字母,下划线组成(可以用中文但是不推荐) 不能以数字开头 不能与关键词重名 ...
- 如何让mysql按照两个或多个字段排序
我准备设计一个供求信息的表格,里边包含序号(id)(自动增量),发布日期(time),上次更新(last_time).因为考虑到避免有人不停的重复发布信息来占据前列位置所以设置了last_time这个 ...
- kubenetes无法创建pod/创建RC时无法自动创建pod的问题
一.问题概述 问题1: 虽然每次通过yaml创建rc都显示成功了,但是 kubectl get pod却没显示任何的pod. 问题2: 直接通过yaml创建pod提示apixxx 问题3: 通过.js ...