51nod1149 Pi的递推式
输入一个整数N(1 <= N <= 10^6)
输出F(N) Mod 10^9 + 7
5
3
数学问题 递推 组合数
实数下标的递推,甚至不能记忆化(吧?),递归显然不可取。
可以先考虑一般的情况。
比如Fibonacci数列的递推式是 $ F[n]=F[n-1]+F[n-2] $
众所周知,它的组合数意义可以解释为任选走一级或走两级,从0级上到n级台阶的方案数。(然而蒟蒻博主就不知道)
由此得出F[n]的另一个计算方式是枚举走两级走了i次,然后 $F[n]=\sum_{i=0}^{n/2} C(n-2i+i,i) $
这个算法可以推广到一般的递推式。
那么在本题中,可以类似地枚举走1和走pi的次数,累计从0走到大于n-4的位置的方案数。
由于枚举走1或枚举走pi时,另一个走法的次数上限不同(第一次到达>n-4的位置时,到达的具体位置不同),所以要分类讨论。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const double pi=acos(-1.0);
const int mxn=;
const int mod=1e9+;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int ksm(int a,int k){
int res=;
while(k){
if(k&)res=(LL)res*a%mod;
a=(LL)a*a%mod;
k>>=;
}
return res;
}
int fac[mxn],inv[mxn];
void init(int ed){
fac[]=fac[]=;inv[]=inv[]=;
for(int i=;i<=ed;i++)
fac[i]=(LL)fac[i-]*i%mod;
inv[ed]=ksm(fac[ed],mod-);
for(int i=ed-;i;i--)
inv[i]=(LL)inv[i+]*(i+)%mod;
return;
}
inline int C(int n,int m){
if(n<m)return ;
return (LL)fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int n;
int ans=;
int main(){
int i,j;
n=read();
if(n<){
printf("1\n");return ;
}
init(n);
for(i=;i<=n-;i++){//
int tmp=(int)(((double)n--i)/pi);
// printf("i:%d tmp:%d %d\n",i,tmp,C(tmp+i,i));
(ans+=C(tmp+i,i))%=mod;
}
for(i=;i*pi<=n-;i++){//pi
int tmp=(int)(n--i*pi);
// printf("i:%d tmp:%d %d\n",i,tmp,C(tmp+i,i));
(ans+=C(tmp+i,i))%=mod;
}
printf("%d\n",ans);
return ;
}
51nod1149 Pi的递推式的更多相关文章
- 51nod 1149 Pi的递推式(组合数学)
传送门 解题思路 首先因为\(Pi\)不是整数,所以不能直接递推.这时我们要思考这个式子的实际意义,其实\(f(i)\)就可以看做从\(i\)这个点,每次可以向右走\(Pi\)步或\(1\)步,走到[ ...
- 【51nod】1149 Pi的递推式
题解 我们把这个函数的递归形式画成一张图,会发现答案是到每个出度为0的点的路径的方案数 这个可以用组合数算 记录一下P[i]为i减几次PI减到4以内 如果P[i + 1] > P[i],那么转向 ...
- 51NOD 1149:Pi的递推式——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149 F(x) = 1 (0 <= x < 4) F(x) ...
- 51nod 1149 Pi的递推式 组合数
题目大意: \(F(x) = 1 (0 \leq x < 4)\) \(F(x) = F(x-1) + F(x-\pi) (4 \leq x)\) 给定\(n\),求\(F(n)\) 题解: 我 ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...
- hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)
题意:有一个递推式f(x) 当 x < 10 f(x) = x.当 x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...
- Tyche 2191 WYF的递推式
题目描述 WYF手中有这样一条递推式 WYF并不是想让你帮他做出结果,事实上,给定一个n,他能够迅速算出Fn.WYF只是想单纯的考验一下读者们. 输入描述 仅一行,三个整数N,F1,P 输出描述 仅一 ...
- HDU - 2604 Queuing(递推式+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- FTP渗透测试
在这篇文章中,我们将学习如何在CentOS机器配置ProFTPD的服务.之后,我们将进行渗透测试,以评估FTP服务的安全性,那么我们也将学习漏洞的对策. 在CentOS Linux机器的安装和配置FT ...
- jdk&tomcat环境变量配置及同时运行多个tomcat方法
一:jdk配置 安装jdk1.7.0_51,安装过程中所有选项保持默认:最后配置 JDK的环境变量: 在“我的电脑”上点右键—>“属性”—>“高级”—>“环境变量(N)”. 1.新建 ...
- 西南大学校园网客户端共享网络之路由器开wifi
1年前出了NetKeeper,让寝室只能一个人用一个账号,而且,在寝室平板手机什么的只能靠360wifi什么的来维持了,电脑一直不能关,确实让人不爽. 最近学校又出台了swu-wifi-dorm来让寝 ...
- 双主双写、只备份某些表且要在建表ID自增
先展示下最终实现的配置 主1的配置(重要的,其他略) log-bin = mysql-bin #必须要有binlog auto_increment_offset = 1 #自增ID的初始值 auto_ ...
- C# 为VB6.0程序模拟串口数据
为VB6.0编写程序模拟数据测试使用. 一.VB6.0 控件MSComm,来发送接收串口数据 CommPort 属性设置并返回通讯端口号,虚拟端口为COM2. Settings 属性设置并返回端口的波 ...
- PHP通过SMTP实现发送邮件_包括附件
require("class.phpmailer.php"); //这个是一个smtp的php文档,网上可以下载得到 $mail = new PHPMailer(); //建立邮件 ...
- xshell代理设置
1.宿主机设置隧道 上面的端口随意,不与本机使用的端口重合即可,下面的端口是管理系统的端口 2.宿主机上面创建的虚机设置代理 3.怎么通过web浏览器直接登录虚机ip网址:https://blog.c ...
- C++手动开O2优化
O2优化能使程序的编译效率大大提升. 从而减少程序的运行时间,达到优化的效果. C++程序中的O2开关如下所示: #pragma GCC optimize(2) 同理O1.O3优化只需修改括号中的数即 ...
- 转:pairwise 代码参考
Learning to rank with scikit-learn: the pairwise transform http://fa.bianp.net/blog/2012/learning-to ...
- P3932 浮游大陆的68号岛 【线段树】
P3932 浮游大陆的68号岛 有一天小妖精们又在做游戏.这个游戏是这样的. 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下 ...