P3866 [TJOI2009]战争游戏 最小割
$ \color{#0066ff}{ 题目描述 }$
小R正在玩一个战争游戏。游戏地图是一个M行N列的矩阵,每个格子可能是障碍物,也可能是空地,在游戏开始时有若干支敌军分散在不同的空地格子中。每支敌军都可以从当前所在的格子移动到四个相邻的格子之一,但是不能移动到包含障碍物的格子。如果敌军移动出了地图的边界,那么战争就失败了。
现在你的任务是,在敌军开始移动前,通过飞机轰炸使得某些原本是空地的格子变得不可通行,这样就有可能阻止敌军移出地图边界(出于某种特殊的考虑,你不能直接轰炸敌军所在的格子)。由于地形不同的原因,把每个空地格子轰炸成不可通行所需的炸弹数目可能是不同的,你需要计算出要阻止敌军所需的最少的炸弹数。
\(\color{#0066ff}{输入格式}\)
输入文件的第一行包含两个数M和N,分别表示矩阵的长和宽。接下来M行,每行包含用空格隔开的N个数字,每个数字表示一个格子的情况:若数字为-1,表示这个格子是障碍物;若数字为0,表示这个格子里有一支敌军;若数字为一个正数x,表示这个格子是空地,且把它轰炸成不可通行所需的炸弹数为x。
地图上的敌军数量不为1,及地图上有多个0
\(\color{#0066ff}{输出格式}\)
输出一个数字,表示所需的最少炸弹数。数据保证有解存在
\(\color{#0066ff}{输入样例}\)
4 3
1 2 1
1 10 1
1 0 -1
1 1 1
\(\color{#0066ff}{输出样例}\)
6
\(\color{#0066ff}{数据范围与提示}\)
对50%的数据,1 ≤ M,N ≤ 10
对100%的数据,1 ≤ M,N ≤ 30
矩阵里的每个数不超过100
\(\color{#0066ff}{题解}\)
简单来说就是让一些路径不连通,再加上数据范围,那就是最小割了
把这些点都拆成两个点,这两个点之间的边当且仅当可以轰炸,连轰炸的代价的容量,否则连inf代表不可割
起点向所有有敌人的格子连,还是不能割的inf,所有边界格子向t连inf的边,跑最小割就行了
吐槽一句博客园,zhayao居然是关键字,我只好改成了炸弹qwq
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
template<class T> bool chkmax(T &a, const T &b) { return a < b? a = b, 1 : 0; }
template<class T> bool chkmin(T &a, const T &b) { return b < a? a = b, 1 : 0; }
const int maxn = 1e5 + 10;
const int inf = 0x7fffffff;
struct node {
int to, can;
node *nxt, *rev;
node(int to = 0, int can = 0, node *nxt = NULL): to(to), can(can), nxt(nxt) { rev = NULL; }
};
node *head[maxn], *cur[maxn];
int dep[maxn];
int rx[] = {1, -1, 0, 0};
int ry[] = {0, 0, 1, -1};
int n, m, s, t;
void add(int from, int to, int can) {
head[from] = new node(to, can, head[from]);
}
void link(int from, int to, int can) {
add(from, to, can), add(to, from, 0);
head[from]->rev = head[to], head[to]->rev = head[from];
}
bool bfs() {
for(int i = s; i <= t; i++) dep[i] = 0, cur[i] = head[i];
std::queue<int> q; q.push(s); dep[s] = 1;
while(!q.empty()) {
int tp = q.front(); q.pop();
for(node *i = head[tp]; i; i = i->nxt)
if(!dep[i->to] && i->can)
q.push(i->to), dep[i->to] = dep[tp] + 1;
}
return dep[t];
}
int dfs(int x, int change) {
if(x == t || !change) return change;
int flow = 0, ls;
for(node *&i = cur[x]; i; i = i->nxt)
if(dep[i->to] == dep[x] + 1 && (ls = dfs(i->to, std::min(change, i->can)))) {
flow += ls;
change -= ls;
i->can -= ls;
i->rev->can += ls;
if(!change) break;
}
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) flow += dfs(s, inf);
return flow;
}
int id(int x, int y) { return (x - 1) * m + y; }
int main() {
n = in(), m = in();
s = 0, t = n * m * 2 + 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) {
int x = in();
if(x == -1) continue;
for(int k = 0; k < 4; k++) {
int xx = i + rx[k];
int yy = j + ry[k];
if(xx >= 1 && xx <= n && yy >= 1 && yy <= m) link(id(i, j) + n * m, id(xx, yy), inf);
}
if(x == 0) link(s, id(i, j), inf), link(id(i, j), id(i, j) + n * m, inf);
if(x > 0) link(id(i, j), id(i, j) + n * m, x);
if(i == 1 || i == n || j == 1 || j == m) link(id(i, j) + n * m, t, inf);
}
printf("%d\n", dinic());
return 0;
}
P3866 [TJOI2009]战争游戏 最小割的更多相关文章
- P3866 [TJOI2009]战争游戏
P3866 [TJOI2009]战争游戏 题目背景 小R正在玩一个战争游戏.游戏地图是一个M行N列的矩阵,每个格子可能是障碍物,也可能是空地,在游戏开始时有若干支敌军分散在不同的空地格子中.每支敌军都 ...
- 「Luogu P3866」[TJOI2009]战争游戏 解题报告
题面 好难表述啊~ 在n*m的矩阵上,有一些大兵(为0),一些空地(一个正整数),障碍物(-1),现在摧毁一些空地,使所有大兵不能走出矩阵去(代价为表示空地的整数),求最小代价 思路: 网络流最小割 ...
- [TJOI2009] 战争游戏
题目背景 小R正在玩一个战争游戏.游戏地图是一个M行N列的矩阵,每个格子可能是障碍物,也可能是空地,在游戏开始时有若干支敌军分散在不同的空地格子中.每支敌军都可以从当前所在的格子移动到四个相邻的格子之 ...
- 网络战争 [KD-Tree+最小割树]
题面 思路 首先吐槽一下: 这题是什么东西啊??出题人啊,故意拼题很有意思吗??还拼两个这么毒瘤的东西???? 10K代码了解一下???? 然后是正经东西 首先,本题可以理解为这样: 给定$n$个块, ...
- 【BZOJ2756】奇怪的游戏(二分,最小割)
题意: Blinker最近喜欢上一个奇怪的游戏.这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻的格子,并使这两个数都加上 1.现在 Blinker 想知道最 ...
- 【BZOJ3232】圈地游戏 分数规划+最小割
[BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- bzoj 3232: 圈地游戏【分数规划+最小割】
数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
随机推荐
- opencv cv::imageshow 不加waitKey()不能显示图片
官方解释是highgui 没有给imshow绘制处理的时间.需要在imshow添加waitKey() waitKey()单位是ms
- linux zip解压缩中文乱码
这里提供两个解决方案: 1.python处理下:https://gist.github.com/wangjiezhe/7841a350983a147b6d7e 2.java的zip4j:http:// ...
- ServiceStack.Redis泛型存储后getById问题
关于ServiceStack.Redis实体存储常用的有一下几个方法 StoreAsHash<T>(T entity) //将对象按照Hash存储 Redis.As<T>() ...
- Qt5.7学习
一 Qt简介(Build your world with Qt) 二 Qt5.7.0的安装 三 Qt系统构造库及常用类 四 信号(signal)与槽(slot)通信机制 五 QtDesigner开发工 ...
- mysql中查看表结构的sql语句
mysql查看表结构命令,如下: desc 表名;show columns from 表名;describe 表名;show create table 表名; use information_sche ...
- Web测试-day
昨天太忙忘了写博客,今天补上: 这两天完成的工作: 我们组选定了博客园和CSDN作为对比,进行Web测试. 胡俊辉--找到了10个网页的bug,并完成了bug记录文档,并且对CSDN和博客园进行功能分 ...
- data-参数说明(模态弹出窗的使用)
除了通过data-toggle和data-target来控制模态弹出窗之外,Bootstrap框架针对模态弹出框还提供了其他自定义data-属性,来控制模态弹出窗.比如说:是否有灰色背景modal-b ...
- JavaScript 算法应用: 遍历DOM树的两种方式
1 常见的DOM树结构: 2 DOM数遍历有两种方式: 3 广度优先代码: 4 深度优先遍历代码
- CodeForces 682B Alyona and Mex (题意水题)
题意:给定一个序列,你可以对这里面的数用小于它的数来代替,最后让你求,改完后的最大的序列中缺少的最小的数. 析:这个题,读了两个多小时也没读懂,要是读懂了,肯定能做出来...没什么可说的,就是尽量凑1 ...
- Eclipse下配置主题颜色
插件地址 http://eclipse-color-theme.github.com/update 安装之后 下载安装好之后,点击window -> preferences -> Gen ...