2510: 弱题

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 374  Solved: 196

Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

Source

【分析】

  综合题表里面目测的一道【稀少的】可做题。。

  显然,矩阵乘法嘛。。$f[i][j]=f[i-1][j]*\dfrac{m-1}{m}+f[i-1][j-1]*\dfrac{1}{m}$

  然后一个厉害的东西就是A,B是循环矩阵(就是矩阵的下一行是上一行循环右移一位得到的),那么A*B=C的C也是循环矩阵。

  只需求第一行就可以求出整个C。

  所以是$n^2 log$

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1010 int a[Maxn];
int n,m,k; struct node
{
double w[Maxn][Maxn];
}t[]; void mul(int x,int y,int z)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) t[].w[i][j]=;
for(int k=;k<=n;k++)
for(int j=;j<=n;j++)
t[].w[][j]+=t[y].w[][k]*t[z].w[k][j];
for(int j=;j<=n;j++) t[x].w[][j]=t[].w[][j];
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
t[x].w[i][j]=t[x].w[i-][j-==?n:j-];
}
} void qpow(int b)
{
for(int i=;i<=n;i++) for(int j=;j<=n;j++) t[].w[i][j]=;
for(int i=;i<=n;i++) t[].w[i][i]=1.0;
while(b)
{
if(b&) mul(,,);
mul(,,);
b>>=;
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++) t[].w[i][j]=;
t[].w[i][i]=1.0-1.0/m;
t[].w[i][i-==?n:i-]=1.0/m;
}
qpow(k);
for(int i=;i<=n;i++)
{
double ans=;
for(int j=;j<=n;j++)
{
ans+=a[j]*t[].w[i][j];
}
printf("%.3lf\n",ans);
}
return ;
}

2017-04-10 20:47:14

【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)的更多相关文章

  1. 【BZOJ2510】弱题 期望DP+循环矩阵乘法

    [BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...

  2. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  3. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  4. [BZOJ 2510]弱题

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 419  Solved: 226[Submit][Status][Discuss] D ...

  5. 「BZOJ2510」弱题(矩阵乘法,降维)

    有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...

  6. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

  7. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  8. 「BZOJ2510」弱题

    「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...

  9. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

随机推荐

  1. Intersection(HDU5120 + 圆交面积)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5120 题目: 题意: 求两个圆环相交的面积. 思路: 两个大圆面积交-2×大圆与小圆面积交+两小圆面 ...

  2. dataTables.js 响应式/package-lock.json 作用/eclipse 目录和工作区建立连接/navcat 导出数据库/vscode 快速进入方法

    下班时间到啦! --下班都是他们的,而我,什么都没有. 什么周五放松日,什么五四青年节,什么都么有.继续总结一下今天遇到的问题. dataTables.js 响应式 使用dataTables.js创建 ...

  3. struts的标签

    <%@ taglib uri="/struts-tags" prefix="s"%> <%@ taglib uri="/WEB-IN ...

  4. 【IDEA】IDEA中maven项目pom.xml依赖不生效解决

    问题: 今天在web项目中需要引入poi相关jar包.查看之下才发现pom.xml中的依赖虽然已经下载到了本地仓库 repository,但是却没有加入到项目路径的 Extenal Libraries ...

  5. 如何在LINUX中开机、登陆、退出、定时、定期自动运行程序

    1.开机启动时自动运行程序 Linux加载后, 它将初始化硬件和设备驱动, 然后运行第一个进程init.init根据配置文件继续引导过程,启动其它进程.通常情况下,修改放置在 /etc/rc或 /et ...

  6. 64_t6

    texlive-recipebook-svn37026.0-33.fc26.2.noarch.rpm 24-May-2017 15:44 37946 texlive-recipecard-doc-sv ...

  7. weblogic12.1.3 静默安装 建域

    --安装依赖包 yum -y install compat-libcap1 compat-libstdc++ gcc gcc-c++ glibc-devel libaio-devel libstdc+ ...

  8. 【BubbleCup X】F:Product transformation

    按照题解的规律,首先能看出前面每个数幂次的性质. 然后发掘约数的性质 #include<bits/stdc++.h> ; typedef long long ll; using names ...

  9. 定位、判断、cookie的脚本案例

    Action(){ lr_think_time(20); lr_start_transaction("µã»÷ÊÂÏî°ìÀíÇé¿ö°´Å¥"); web_url("L ...

  10. DroidParts 中文系列教程(基于官方教程)

    DroidParts中文系列教程(基于官方教程) (一)DroidParts框架概况 2014年4月18日星期五 11:36 他是一个精心构造的安卓框架,包括下面这些基本功能 DI依赖注入,可以注入V ...