2510: 弱题

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 374  Solved: 196

Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

Source

【分析】

  综合题表里面目测的一道【稀少的】可做题。。

  显然,矩阵乘法嘛。。$f[i][j]=f[i-1][j]*\dfrac{m-1}{m}+f[i-1][j-1]*\dfrac{1}{m}$

  然后一个厉害的东西就是A,B是循环矩阵(就是矩阵的下一行是上一行循环右移一位得到的),那么A*B=C的C也是循环矩阵。

  只需求第一行就可以求出整个C。

  所以是$n^2 log$

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1010 int a[Maxn];
int n,m,k; struct node
{
double w[Maxn][Maxn];
}t[]; void mul(int x,int y,int z)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) t[].w[i][j]=;
for(int k=;k<=n;k++)
for(int j=;j<=n;j++)
t[].w[][j]+=t[y].w[][k]*t[z].w[k][j];
for(int j=;j<=n;j++) t[x].w[][j]=t[].w[][j];
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
t[x].w[i][j]=t[x].w[i-][j-==?n:j-];
}
} void qpow(int b)
{
for(int i=;i<=n;i++) for(int j=;j<=n;j++) t[].w[i][j]=;
for(int i=;i<=n;i++) t[].w[i][i]=1.0;
while(b)
{
if(b&) mul(,,);
mul(,,);
b>>=;
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++) t[].w[i][j]=;
t[].w[i][i]=1.0-1.0/m;
t[].w[i][i-==?n:i-]=1.0/m;
}
qpow(k);
for(int i=;i<=n;i++)
{
double ans=;
for(int j=;j<=n;j++)
{
ans+=a[j]*t[].w[i][j];
}
printf("%.3lf\n",ans);
}
return ;
}

2017-04-10 20:47:14

【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)的更多相关文章

  1. 【BZOJ2510】弱题 期望DP+循环矩阵乘法

    [BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...

  2. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  3. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  4. [BZOJ 2510]弱题

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 419  Solved: 226[Submit][Status][Discuss] D ...

  5. 「BZOJ2510」弱题(矩阵乘法,降维)

    有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...

  6. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

  7. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  8. 「BZOJ2510」弱题

    「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...

  9. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

随机推荐

  1. MySQL异常总结

    1.Packets larger than max_allowed_packet are not allowed MySQL的一个系统参数:max_allowed_packet,其默认值为104857 ...

  2. void指针和NULL指针

    Void指针和NULL指针 Void指针: Void指针我们称之为通用指针,就是可以指向任意类型的数据.也就是说,任何类型的指针都可以赋值给Void指针. 举例: #include<stdio. ...

  3. javaScript 中的一些日常用法总结

    从今天开始把开发中常用到的js语法 一一记录下来 方便以后复习回顾用: 1:对字符串进行替换 replace 以及 replaceAll replace : var begin_date =begin ...

  4. tensorflow.nn.bidirectional_dynamic_rnn()函数的用法

    在分析Attention-over-attention源码过程中,对于tensorflow.nn.bidirectional_dynamic_rnn()函数的总结: 首先来看一下,函数: def bi ...

  5. Tinyos Makerules解读

    Makerules 文件解读 位于/opt/tinyos-2.1.2/support/make #-*-Makefile-*- vim:syntax=make #$Id: Makerules,v 1. ...

  6. 013 GC机制

    本文转自:https://www.cnblogs.com/shudonghe/p/3457990.html 最近还是在找工作,在面试某移动互联网公司之前认为自己对Java的GC机制已经相当了解,其他面 ...

  7. Java的BIO,NIO,AIO

    Java中的IO操作可谓常见.在Java的IO体系中,常有些名词容易让人困惑不解.为此,先通俗地介绍下这些名词. 1 什么是同步? 2 什么是异步? 3 什么是阻塞? 4 什么是非阻塞? 5 什么是同 ...

  8. SSL与HTTPS,HTTP有什么联系

    有人问:http和https有什么区别? HTTP,全称"Hyper Text Transfer Protocol",是从浏览器访问网站时使用的默认协议.由于浏览器到网站之间的数据 ...

  9. ie6 css 返回顶部图标固定在浏览器右下角

    比较常用记录一下. #e_float{ _position:absolute; _bottom:auto; _right:50%; _margin-right:-536px; _top:express ...

  10. 【WPF】自定义控件之远程图片浏览

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...