BZOJ5297 CQOI2018 社交网络


Description

当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分。通常,一个用户在社交网络上发布一条消息(例如微博、状态、Tweet等)后,他的好友们也可以看见这条消息,并可能转发。转发的消息还可以继续被人转发,进而扩散到整个社交网络中。在一个实验性的小规模社交网络中我们发现,有时一条热门消息最终会被所有人转发。为了研究这一现象发生的过程,我们希望计算一条消息所有可能的转发途径有多少种。为了编程方便,我们将初始消息发送者编号为1,其他用户编号依次递增。该社交网络上的所有好友关系是已知的,也就是说对于A、B两个用户,我们知道A用户可以看到B用户发送的消息。注意可能存在单向的好友关系,即A能看到B的消息,但B不能看到A的消息。还有一个假设是,如果某用户看到他的多个好友转发了同一条消息,他只会选择从其中一个转发,最多转发一次消息。从不同好友的转发,被视为不同的情况。如果用箭头表示好友关系,下图展示了某个社交网络中消息转发的所有可能情况。



初始消息是用户1发送的,加粗箭头表示一次消息转发

Input

输入文件第一行,为一个正整数n,表示社交网络中的用户数:

第二行为一个正整数m.表示社交网络中的好友关系数目。

接下来m行,每行为两个空格分隔的整数ai和bi,表示一组好友关系,即用户ai可以看到用户bi发送的消息。

1≤n≤250,1≤ai,bi≤n,1≤m≤n(n-1)

Output

输出文件共一行,为一条消息所有可能的转发途径的数量,除以1 0007所得的余数。

Sample Input

4

7

2 1

3 1

1 3

2 3

3 2

4 3

4 2

Sample Output

6


矩阵树定理(Matrix-Tree)现学现用。

对于无向图:

* 主对角线记录每个点度数

* 如果i→j" role="presentation">i→ji→j有边就在fi,j" role="presentation">fi,jfi,j处减一(保证每一列和为零)

对于有向图:

* 主对角线记录每个点出度

* 如果i→j" role="presentation">i→ji→j有边就在fj,i" role="presentation">fj,ifj,i处减一(保证每一列和为零)

如果固定根就删除根所在行列然后求矩阵的行列式

否则随便删一行一列求行列式


然后就发现这道题其实是模板


#include<bits/stdc++.h>
using namespace std;
const int N=260,Mod=10007;
int n,m,sign=1,f[N][N];
void solve(){
for(int i=1;i<n;i++)
for(int j=i+1;j<n;j++){
while(true){
if(!f[j][i])break;
int x=f[i][i]/f[j][i];
for(int k=1;k<n;k++)
f[i][k]=(f[i][k]-f[j][k]*x%Mod+Mod)%Mod;
for(int k=1;k<n;k++)swap(f[i][k],f[j][k]);
sign*=-1;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v;scanf("%d%d",&v,&u);
v--;u--;
if(u!=v)f[u][v]--;
if(v)f[v][v]++;
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
f[i][j]=(f[i][j]%Mod+Mod)%Mod;
solve();
int ans=1;
for(int i=1;i<n;i++)ans=ans*f[i][i]%Mod;
ans=(ans*sign%Mod+Mod)%Mod;
printf("%d\n",ans);
return 0;
}

BZOJ5297 CQOI2018 社交网络 【矩阵树定理Matrix-Tree】的更多相关文章

  1. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  2. P4455 [CQOI2018]社交网络(矩阵树定理)

    题目 P4455 [CQOI2018]社交网络 \(CQOI\)的题都这么裸的吗?? 做法 有向图,指向叶子方向 \(D^{out}(G)-A(G)\) 至于证明嘛,反正也就四个定理,先挖个坑,省选后 ...

  3. 【Learning】矩阵树定理 Matrix-Tree

    矩阵树定理 Matrix Tree ​ 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...

  4. 【BZOJ5297】【CQOI2018】社交网络(矩阵树定理)

    [BZOJ5297][CQOI2018]社交网络(矩阵树定理) 题面 BZOJ 洛谷 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发 ...

  5. BZOJ5297 [Cqoi2018]社交网络 【矩阵树定理】

    题目链接 BZOJ5297 题解 最近这玩意这么那么火 这题要用到有向图的矩阵树定理 主对角线上对应入度 剩余位置如果有边则为\(-1\),不然为\(0\) \(M_{i,i}\)即为以\(i\)为根 ...

  6. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  7. 【算法】Matrix - Tree 矩阵树定理 & 题目总结

    最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...

  8. 矩阵树定理&BEST定理学习笔记

    终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...

  9. 2018.09.16 spoj104Highways (矩阵树定理)

    传送门 第一次写矩阵树定理. 就是度数矩阵减去邻接矩阵之后得到的基尔霍夫矩阵的余子式的行列式值. 这个可以用高斯消元O(n3)" role="presentation" ...

随机推荐

  1. 使用阿里云ECS安装HDFS的小问题

    毕设涉及HDFS,理论看的感觉差不多了,想搭起来测试一下性能来验证以便进行开题报告,万万没想到装HDFS花费了许多天,踩了许多坑,记录一下. 背景:使用两台阿里云学生机ECS,分处不同账号不同区域,一 ...

  2. 使用 Python 在 Caché 和 Sql Server 之间同步数据

    任务目标:抽取 Caché 中的数据,导入 Sql Server 中. 遇到的问题: 1.UnicodeEncodeError: ‘ascii’ codec can’t encode characte ...

  3. Kubernetes服务目录的设计

    [编者的话]OpenShift 3.6新版本包括新的服务目录和服务中介技术预演版.它们是基于Kubernetes的孵化项目Kubernetes Service Catalog project.服务目录 ...

  4. 关于IIS权限问题(Selenium WebDriver调用出错记录)

    本地VS调试过程中用Selenium WebDriver打开FF浏览器可以正常工作,项目部署至IIS后请求调用浏览器一直提示超时,异常如下: 因为本地调试可以成功,首先排除组件版本问题和浏览器兼容问题 ...

  5. git命令速记

    对于不常写代码,有的时候又要提交点代码的人来说,git命令记了又忘,忘了又去花精力记住.有没有一种速记方法,来帮助我们记忆这些玩意呢? 纯属抄袭@_@! 除了几个很基本的命令,复杂一点的,我都要去查, ...

  6. 设计模式--享元模式C++实现

    1定义 使用共享对象可有效的支持大量细粒度的对象 2类图 角色分析 Flyweight抽象享元角色,一个产品的抽象,定义内部状态和外部状态的接口或者实现 ConcreteFlyweight具体享元角色 ...

  7. String C++完整实现。

    String C++实现 改进: /* 版权信息:狼 文件名称:String.h 文件标识: 摘 要:对于上版本简易的String进行优化跟进. 改进 1.(将小块内存问题与大块分别对待)小内存块每个 ...

  8. spring配置bean的生命周期

    配置文件: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http:// ...

  9. Git 从了解到放弃

    1. 简单介绍 1.1. git起源 在1991年linus创建了Linux从此linux成为服务器领域的佼佼者,大部分web服务器.邮件.数据库各种服务器端程序都安装在了linux上面运行,主要是因 ...

  10. Java进阶5 面向对象的陷阱

    Java进阶5 面向对象的陷阱 20131103 Java是一门纯粹面向对象的编程语言,Java面向对象是基础,而且面向对象的基本语法非常多,非常的细,需要程序员经过长时间的学习才可以掌握.本章重点介 ...