Eigen常规矩阵定义

1.使用

Eigen的使用在官网上有详细的介绍,这里对我学习过程中用到的基本操作进行介绍。首先是矩阵的定义。
在矩阵类的模板参数共有6个。一般情况下我们只需要关注前三个参数即可。前三个模板参数如下所示:

Matrix<typename Scalar,int RowsAtCompileTime,int ColsAtCompileTime>
  1. Scalar参数为矩阵元素的类型,该参数可以是int,float,double等。
  2. RowsAtCompileTime和ColsAtCompileTime是矩阵的行数和列数。

Matrix<float,4,4> M44是定义一个4×4的矩阵,矩阵元素以float类型存储。直接使用矩阵模板定义一个矩阵往往会觉得麻烦,Eigen提供了一些基本矩阵的别名定义,如typedef Matrix<float,4,4> Matrix4f.下面是一些内置的别名定义.来源于官方手册

typedef Matrix< std::complex<double> , 2 , 2 > Matrix2cd
typedef Matrix< std::complex<float> , 2 , 2 > Matrix2cf
typedef Matrix< double , 2 , 2 > Matrix2d
typedef Matrix< float , 2 , 2 > Matrix2f
typedef Matrix< int , 2 , 2 > Matrix2i
typedef Matrix< std::complex<double> , 3 , 3 > Matrix3cd
typedef Matrix< std::complex<float> , 3 , 3 > Matrix3cf
typedef Matrix< double , 3 , 3 > Matrix3d
typedef Matrix< float , 3 , 3 > Matrix3f
typedef Matrix< int , 3 , 3 > Matrix3i
typedef Matrix< std::complex<double> , 4 , 4 > Matrix4cd
typedef Matrix< std::complex<float> , 4 , 4 > Matrix4cf
typedef Matrix< double , 4 , 4 > Matrix4d
typedef Matrix< float , 4 , 4 > Matrix4f
typedef Matrix< int , 4 , 4 > Matrix4i
typedef Matrix< std::complex<double> , Dynamic , Dynamic > MatrixXcd
typedef Matrix< std::complex<float> , Dynamic , Dynamic > MatrixXcf
typedef Matrix< double , Dynamic , Dynamic > MatrixXd
typedef Matrix< float , Dynamic , Dynamic > MatrixXf
typedef Matrix< int , Dynamic , Dynamic > MatrixXi
typedef Matrix< std::complex<double> , 1, 2 > RowVector2cd
typedef Matrix< std::complex<float> , 1, 2 > RowVector2cf
typedef Matrix< double , 1, 2 > RowVector2d
typedef Matrix< float , 1, 2 > RowVector2f
typedef Matrix< int , 1, 2 > RowVector2i
typedef Matrix< std::complex<double> , 1, 3 > RowVector3cd
typedef Matrix< std::complex<float> , 1, 3 > RowVector3cf
typedef Matrix< double , 1, 3 > RowVector3d
typedef Matrix< float , 1, 3 > RowVector3f
typedef Matrix< int , 1, 3 > RowVector3i
typedef Matrix< std::complex<double> , 1, 4 > RowVector4cd
typedef Matrix< std::complex<float> , 1, 4 > RowVector4cf
typedef Matrix< double , 1, 4 > RowVector4d
typedef Matrix< float , 1, 4 > RowVector4f
typedef Matrix< int , 1, 4 > RowVector4i
typedef Matrix< std::complex<double> , 1, Dynamic > RowVectorXcd
typedef Matrix< std::complex<float> , 1, Dynamic > RowVectorXcf
typedef Matrix< double , 1, Dynamic > RowVectorXd
typedef Matrix< float , 1, Dynamic > RowVectorXf
typedef Matrix< int , 1, Dynamic > RowVectorXi
typedef Matrix< std::complex<double> , 2 , 1> Vector2cd
typedef Matrix< std::complex<float> , 2 , 1> Vector2cf
typedef Matrix< double , 2 , 1> Vector2d
typedef Matrix< float , 2 , 1> Vector2f
typedef Matrix< int , 2 , 1> Vector2i
typedef Matrix< std::complex<double> , 3 , 1> Vector3cd
typedef Matrix< std::complex<float> , 3 , 1> Vector3cf
typedef Matrix< double , 3 , 1> Vector3d
typedef Matrix< float , 3 , 1> Vector3f
typedef Matrix< int , 3 , 1> Vector3i
typedef Matrix< std::complex<double> , 4 , 1> Vector4cd
typedef Matrix< std::complex<float> , 4 , 1> Vector4cf
typedef Matrix< double , 4 , 1> Vector4d
typedef Matrix< float , 4 , 1> Vector4f
typedef Matrix< int , 4 , 1> Vector4i
typedef Matrix< std::complex<double> , Dynamic , 1> VectorXcd
typedef Matrix< std::complex<float> , Dynamic , 1> VectorXcf
typedef Matrix< double , Dynamic , 1> VectorXd
typedef Matrix< float , Dynamic , 1> VectorXf
typedef Matrix< int , Dynamic , 1> VectorXi

2 向量

向量被作为一种特殊的矩阵进行处理,即要么行为一要么列为一。除非显式的说明为行向量,否则这里将向量默认为列向量。请看下面两个别名定义:

typedef Matrix<float,3,1> Vector3f;
typedef Matrix<int,1,2> RowVector2i;

3 矩阵的动态空间分配

很多时候在程序的编译阶段也许我们并不知道矩阵具体的行列数,这时候使用动态控件分配就显得很必要了。当我们给矩阵模板中参数RowsAtCompileTime或者ColsAtCompileTime参数指定为Dynamic时,表示该矩阵对应行或列为一个动态分配的值。下面是两个动态矩阵的别名定义:

typedef Matrix<double,Dynamic,Dynamic> MatrixXd;
typedef Matrix<int,Dynamic,1> VectorXi;

4 矩阵的构建

经过上面的介绍以后,我们应该能定义一些基本的矩阵了。如:

Matrix3f a;   //定义一个float类型3×3固定矩阵a
MatrixXf b; //定义一个float类型动态矩阵b(0×0)
Matrix<int,Dynamic,3> b; //定义一个int类型动态矩阵(0×3)

对应动态矩阵,我们也可以在构造的时候给出矩阵所占用的空间,比如:

MatrixXf a(10,15);  //定义float类型10×15动态矩阵
VectorXf b(30); //定义float类型30×1动态矩阵(列向量)

为了保持一致性,我们也可以使用上面构造函数的形式定义一个固定的矩阵,即Matrix3f a(3,3)也是允许的。

上面矩阵在构造的过程中并没有初始化,Eigen还为一些小的(列)向量提供了可以初始化的构造函数。如:

Vector2d a(5.0,6.0);
Vector3d b(5.0,6.0,7.0);
Vector4d c(5.0,6.0,7.0,8.0);

5 矩阵元素的访问

Eigen提供了矩阵元素的访问形式和matlab中矩阵的访问形式非常相似,最大的不同是matlab中元素从1开始,而Eigen的矩阵中元素是从0开始访问。对于矩阵,第一个参数为行索引,第二个参数为列索引。而对于向量只需要给出一个索引即可。

#include <iostream>
#include "Eigen\Core" //import most common Eigen types
using namespace Eigen; int main()
{
MatrixXd m(2,2);
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1); std::cout<<"Hear is the matrix m:\n"<<m<<std::endl;
VectorXd v(2);
v(0) = 4;
v(1) = v(0) - 1;
std::cout<<"Here is the vector v:\n"<<v<<std::endl;
}

输出结果如下:

Hear is the matrix m:
3 -1
2.5 1.5
Here is the vector v:
4
3

m(index)这种访问形式并不仅限于向量之中,对于矩阵也可以这样访问。这一点和matlab相同,我们知道在matlab中定义一个矩阵a(3,4),如果我访问a(5)相当于访问a(2,2),这是因为在matlab中矩阵是按列存储的。这里比较灵活,默认矩阵元素也是按列存储的,但是我们也可以通过矩阵模板构造参数Options=RowMajor改变存储方式(这个参数是我们还没有提到的矩阵构造参数的第4个参数)。

6 一般初始化方法

对于矩阵的初始化,我们可以采用下面的方法方便且直观的进行:

Matrix3f m;
m<<1,2,3,
4,5,6,
7,8,9;
std:cout<<m;

7 矩阵的大小

Eigen提供了rows(),cols(),size()方法来获取矩阵的大小,同时也同了resize()方法从新改变动态数组的大小。

#include <iostream>
#include "Eigen\Core" using namespace Eigen; int main()
{
MatrixXd m(2,5);
m<<1,2,3,4,5,
6,7,8,9,10;
m.resize(4,3);
std::cout<<"The matrix m is:\n"<<m<<std::endl;
std::cout<<"The matrix m is of size "
<<m.rows()<<"x"<<m.cols()<<std::endl;
std::cout<<"It has "<<m.size()<<" coefficients"<<std::endl;
VectorXd v(2);
v<<1,2;
v.resize(5);
std::cout<<"The vector v is:\n"<<v<<std::endl;
std::cout<<"The vector v is of size "<<v.size()<<std::endl;
std::cout<<"As a matrix,v is of size "<<v.rows()
<<"x"<<v.cols()<<std::endl;
}

输出结果如下:

The matrix m is:
1 3 5
6 8 10
2 4 9.58787e-315
7 9 1.17493e-309
The matrix m is of size 4x3
It has 12 coefficients
The vector v is:
1
2
1.17477e-309
7.0868e-304
0
The vector v is of size 5
As a matrix,v is of size 5x1

可以看到我们可以把矩阵任意的resize,但是resize后矩阵的元素会改变,如果resize后的矩阵比之前的大会出现一些未初始化的元素。如果被resize的矩阵按列存储(默认),那么resize命令和matlab中的reshape执行结果相同,只是matlab要求reshape的矩阵前后元素必须相同,也就是不允许resize后不能出现未初始化的元素。
对于固定大小的矩阵虽然也支持resize命令,但是resize后的大小只能是它本身的大小,否则就会报错。因为resize前后如果矩阵大小一样,就不会执行resize。如果我们不想在resize后改变矩阵的对应元素,那么可以使用conservativeResize()方法。对应上面程序中的m矩阵我们调用m.conservativeResize(4,3)后得到结果如下。其中因为行数增加了,增加的行会以未初始化的形式出现。

The matrix m is:
1 2 3
6 7 8
9.58787e-315 2.122e-314 1.52909e+249
0 0 2.47039e+249

http://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html

8 赋值和大小变换

在Eigen中使用=可以直接将一个矩阵复制给另外一个矩阵,如果被复制的和赋值矩阵大小不一致,会自动对被复制矩阵执行resize函数。当然如果被复制的矩阵为固定矩阵当然就不会执行resize函数。当然也可以通过一些设置取消这个自动resize的过程。

using namespace Eigen;

int main()
{
MatrixXf a(2,2);
MatrixXf b(3,3);
b<<1,2,3,
4,5,6,
7,8,9;
a = b;
std::cout<<a<<std::endl;
}

输出结果:

1 2 3
4 5 6
7 8 9

9 固定矩阵和动态矩阵

什么时候使用固定矩阵什么时候使用动态矩阵呢?简单的说:当矩阵尺寸比较小时使用固定矩阵(一般小于16),当矩阵尺寸较大时使用动态矩阵(一般大于32)。使用固定矩阵有更好的表现,它可以避免重复的动态内存分配,固定矩阵实际上是一个array。即Matrix4f mymatrix;事实上是float mymatrix[16];。所以这个是真的不花费任何运行时间。相反动态矩阵的建立需要在
heap中分配空间。即MatrixXf mymatrix(rows,colums);实际上是float *mymatrix = new float[rows*colums];.此外动态矩阵还要保存行和列的值。
当然固定矩阵也存在着显而易见的弊端。当数组的大小过大时,固定数组的速度优势就不那么明显了,相反过大的固定数组有可能造成stack的溢出。这时候动态矩阵的灵活性就显得十分重要了。

10 其他模板参数

最开始我们已经提到了建立一个矩阵一共有6个模板参数,其中有3个我们还没有提到(其实第三个参数已经提到过了)。

Matrix<typename Scalar,
int RowsAtCompileTime,
int ColsAtCompileTime,
int Options=0,
int MaxRowsAtCompileTime = RowsAtCompileTime,
int MaxColsAtCompileTime = ColsAtCompileTime>
  1. Options:这个参数决定了矩阵在存储过程中实际是按行还是按列存储。这个存储方式在前面我们提到的矩阵变换时必须要注意。默认是按列存储,我们可以显示的使用Options=RowMajor让矩阵实际按行存储。如Matrix<float,2,3,RowMajor> a;.
  2. MaxRowsAtCompileTime和MaxColsAtCompileTime:这两个值是设定动态矩阵在分配空间时最大的行数和列数。如Matrix<float,Dynamic,Dynamic,0,3,4>;.

11 常规的矩阵typedef

我们前面给出了一些常用的矩阵typedef.其实可以总结如下:

  1. MatrixNt对应的是Matrix
  2. VectorNt对应的是Matrix
  3. RowVectorNt对应的是Matrix

其中:

  1. N可以是2,3,4或者X(表示Dynamic).
  2. t可以是i(int),f(float),d(double),cf(complex

Eigen学习笔记2:C++矩阵运算库Eigen介绍的更多相关文章

  1. c++矩阵运算库Eigen简介

    C++矩阵运算库Eigen介绍 C++中的矩阵运算库常用的有Armadillo,Eigen,OpenCV,ViennaCL,PETSc等.我自己在网上搜了一下不同运算库的特点,最后选择了Eigen.主 ...

  2. python3.4学习笔记(八) Python第三方库安装与使用,包管理工具解惑

    python3.4学习笔记(八) Python第三方库安装与使用,包管理工具解惑 许多人在安装Python第三方库的时候, 经常会为一个问题困扰:到底应该下载什么格式的文件?当我们点开下载页时, 一般 ...

  3. seaJs学习笔记2 – seaJs组建库的使用

    原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以不断的学习将是源源不断. 最 ...

  4. openresty 学习笔记六:使用session库

    openresty 学习笔记六:使用session库 lua-resty-session 是一个面向 OpenResty 的安全和灵活的 session 库,它实现了 Secure Cookie Pr ...

  5. Kinect开发学习笔记之(一)Kinect介绍和应用

    Kinect开发学习笔记之(一)Kinect介绍和应用 zouxy09@qq.com http://blog.csdn.net/zouxy09 一.Kinect简单介绍 Kinectfor Xbox ...

  6. Nodejs学习笔记(十六)--- Pomelo介绍&入门

    目录 前言&介绍 安装Pomelo 创建项目并启动 创建项目 项目结构说明 启动 测试连接 聊天服务器 新建gate和chat服务器 配置master.json 配置servers.json ...

  7. Nodejs学习笔记(十六)—Pomelo介绍&入门

    前言&介绍 Pomelo:一个快速.可扩展.Node.js分布式游戏服务器框架 从三四年前接触Node.js开始就接触到了Pomelo,从Pomelo最初的版本到现在,总的来说网易出品还算不错 ...

  8. WebGL three.js学习笔记 6种类型的纹理介绍及应用

    WebGL three.js学习笔记 6种类型的纹理介绍及应用 本文所使用到的demo演示: 高光贴图Demo演示 反光效果Demo演示(因为是加载的模型,所以速度会慢) (一)普通纹理 计算机图形学 ...

  9. Duanxx的Design abroad: C++矩阵运算库Eigen 概要

    一.概要 这两天想起来要做神经网络的作业了,要求用C++完毕神经网络的算法. 摆在面前的第一个问题就是,神经网络算法中大量用到了矩阵运算.可是C++不像matlab那样对矩阵运算有非常好的支持.本来准 ...

  10. Linux学习笔记——如何使用共享库交叉编译

    0.前言     在较为复杂的项目中会利用到交叉编译得到的共享库(*.so文件).在这样的情况下便会产生下面疑问,比如:     [1]交叉编译时的共享库是否须要放置于目标板中,假设须要放置在哪个文件 ...

随机推荐

  1. winform MDI子窗口闪动问题(本人测试100%有效解决闪屏问题)

    将下面的代码随便放到主窗体的任何一个地方 protected override CreateParams CreateParams //解决MDI闪屏 { get { CreateParams cp ...

  2. 使用 XSLT 作为 HTML 的样式表

    简介 当听到样式表这个词时,您可能会想到 CSS 样式表.XSLT 样式表通常用于 XML 转换,比如在 Web 服务之间映射数据.因为 XSLT 非常适合此用途,所以创建了顶层元素 <styl ...

  3. Oracle笔记之约束

    约束用于保证数据库中某些数据的完整性,给某一列添加一个约束可以保证不满足约束的数据是绝对不会被接受的. 约束主要有那么五种类型:非空约束.唯一约束.主键约束.外键约束.校验约束. 使用如下命令检索某个 ...

  4. 项目开发 -- ZFS容量分配

    存储池 allocated 池中已实际分配的存储空间量.该属性也可通过其简短列名alloc来引用. capacity 已用的池空间百分比.此属性也可通过其简短列名cap来引用. dedupratio ...

  5. Tinyos 第三版Make系统

    1.make系统安装 cd tools ./Bootstrap ./configure make sudo make install 2.make系统结构 3.第三版Makerules文件部分解析 # ...

  6. Supply

    Supplier创建一个Supply Supply有tap或emit方法. 可以这样理解: Supplier创建一个工厂 Supply 用tap创建流水线 emit向流水线上传送加工品进行加厂 my ...

  7. Mac nginx 配置

    nginx 安装: 在苹果系统下如果要安装nginx,首先要安装brew.安装brew可以查看网站:https://brew.sh: 一条命令即可搞定:/usr/bin/ruby -e "$ ...

  8. 2-Python基础语法-内存管理-运算符-程序控制

    目录 1 Python 基础语法 1.1 注释 1.2 缩进 1.3 续行 1.4 标识符 1.5 转义序列 1.6 数字 1.7 字符串 1.8 其他 2 Python 运算符 2.1 赋值运算符 ...

  9. SPOJ DQUERY D-query (在线主席树/ 离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. SPOJ DQUERY 题意: 给出一串数,询问[L,R]区间中有多少个不同的数 . 解法: 关键是查询到某个右端点时,使其左边出现过的数都记录在 ...

  10. Vue.js——60分钟快速入门(转)

    var vm = new Vue({ el: '#app', data: { people: [{ name: 'Jack', age: 30, sex: 'Male' }, { name: 'Bil ...