Problem 2140 Forever 0.5

Accept: 371 Submit: 1307 Special Judge

Time Limit: 1000 mSec Memory Limit : 32768 KB

Problem Description

Given an integer N, your task is to judge whether there exist N points in the plane such that satisfy the following conditions:

  1. The distance between any two points is no greater than 1.0.

  2. The distance between any point and the origin (0,0) is no greater than 1.0.

  3. There are exactly N pairs of the points that their distance is exactly 1.0.

  4. The area of the convex hull constituted by these N points is no less than 0.5.

  5. The area of the convex hull constituted by these N points is no greater than 0.75.

    Input

The first line of the date is an integer T, which is the number of the text cases.

Then T cases follow, each contains an integer N described above.

1 <= T <= 100, 1 <= N <= 100

Output

For each case, output “Yes” if this kind of set of points exists, then output N lines described these N points with its coordinate. Make true that each coordinate of your output should be a real number with AT MOST 6 digits after decimal point.

Your answer will be accepted if your absolute error for each number is no more than 10-4.

Otherwise just output “No”.

See the sample input and output for more details.

Sample Input

3

2

3

5

Sample Output

No

No

Yes

0.000000 0.525731

-0.500000 0.162460

-0.309017 -0.425325

0.309017 -0.425325

0.500000 0.162460

以原点为圆心,半径为1的圆内,以原点为顶点,变成为1的正三角形另外两个点在圆上,你会发现,两个点之间的那段弧,上的所有点都是满足条件的,所以只要三个顶点分别是正三角形的三个顶点,其余的点在弧上,都是正确的

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int n;
int t;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
if(n<=3)
printf("No\n");
else
{
printf("Yes\n"); printf("0.000000 0.000000\n");
printf("0.500000 %.6f\n",-1.0*sqrt(3.0)/2);
printf("-0.500000 %.6f\n",-1.0*sqrt(3.0)/2);
for(int i=1;i<=n-3;i++)
printf("-0.000000 -1.000000\n");
} }
return 0; }

FZU 2140 Forever 0.5(找规律,几何)的更多相关文章

  1. FZU 2140 Forever 0.5

     Problem 2140 Forever 0.5 Accept: 36    Submit: 113    Special JudgeTime Limit: 1000 mSec    Memory ...

  2. FZU 2140 Forever 0.5 (几何构造)

    Forever 0.5 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit  ...

  3. ACM学习历程—FZU 2140 Forever 0.5(计算几何 && 构造)

    Description   Given an integer N, your task is to judge whether there exist N points in the plane su ...

  4. FZU 2140 Forever 0.5(将圆离散化)

    主要就是将圆离散化,剩下的都好办 #include<iostream> #include<cstdio> #include<cstring> #include< ...

  5. fzu Problem 2140 Forever 0.5(推理构造)

    题目:http://acm.fzu.edu.cn/problem.php?pid=2140 题意: 题目大意:给出n,要求找出n个点,满足: 1)任意两点间的距离不超过1: 2)每个点与(0,0)点的 ...

  6. 翻翻棋(找规律问题)(FZU Problem 2230)

    题目是这样的: FZU Problem 2230 象棋翻翻棋(暗棋)中双方在4*8的格子中交战,有时候最后会只剩下帅和将.根据暗棋的规则,棋子只能上下左右移动,且相同的级别下,主动移动到地方棋子方将吃 ...

  7. FZU2168——防守阵地 I——————【找规律或前缀和】

    防守阵地 I Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. hdu 3951 - Coin Game(找规律)

    这道题是有规律的博弈题目,,, 所以我们只需要找出规律来就ok了 牛人用sg函数暴力找规律,菜鸟手工模拟以求规律...[牢骚] if(m>=2) { if(n<=m) {first第一口就 ...

  9. HDU 5703 Desert 水题 找规律

    已知有n个单位的水,问有几种方式把这些水喝完,每天至少喝1个单位的水,而且每天喝的水的单位为整数.看上去挺复杂要跑循环,但其实上,列举几种情况之后就会发现是找规律的题了= =都是2的n-1次方,而且这 ...

随机推荐

  1. C++加载dll失败或显示乱码

    右键项目-属性-字符集-使用多字节字符集

  2. makefile之wildcard函数

    $(wildcard PATTERN) 函数功能: 获取匹配 PATTERN 的所有对象 返回值: 使用空格分割的匹配对象列表 1. 示例1

  3. Qt中将QString转换为char *或者相反

    1.将QString转换为std::string,可以通过QString的成员函数toStdString() QString Qstr="123";std::string str= ...

  4. Sql Server 语句集合

    -- 判断数据库表是否存在 select count(*) from sysobjects where id=OBJECT_ID('tableName'); -- 返回 1存在,0不存在 -- 判断表 ...

  5. 将php和mysql命令加入到环境变量中

    方法一:直接运行命令export PATH=$PATH:/usr/local/webserver/php/bin 和 export PATH=$PATH:/usr/local/webserver/my ...

  6. 情商 EQ & 儿童情商

    EQ 包括哪些内容 1. 认知自身情绪的能力(正确客观的评价自己)2. 管理自己情绪的能力(控制冲动) 3. 自我激励能力(学会抗挫折) 4. 认识他人情绪的能力(学会移情) 5. 人际关系处理能力 ...

  7. sql 追踪 神器

    http://www.thinkphp.cn/download/690.html 一个中国人开发的php工具箱此工具能几秒钟追踪出sql 数据库操作, 能分析出 Thinkphp3.2 的任意sql ...

  8. 指数族分布(Exponential Families of Distributions)

    指数族分布是一大类分布,基本形式为: T(x)是x的充分统计量(能为相应分布提供足够信息的统计量) 为了满足归一化条件,有: 可以看出,当T(x)=x时,e^A(theta)是h(x)的拉普拉斯变换. ...

  9. Differential Geometry之第九章常平均曲率曲面

    第九章.常平均曲率曲面 1.Hopf微分与Hopf定理 等温坐标系(isothermal coordinate system)曲面上的一种特殊坐标系.若曲面的第一基本形式I在坐标系(u,v)下可以写成 ...

  10. 005Maven_Myeclipse和Maven整合

    准备好:1.Myeclipse2014; 2. E盘下面的: