AtCoder AGC036C GP 2 (组合计数)
题目链接
https://atcoder.jp/contests/agc036/tasks/agc036_c
题解
终于有时间补agc036的题了。
这题其实不难的来着……我太菜了考场上没想出来
首先转化一下题目: 一个序列可以被按题目的操作方式生成当且仅当它长度为\(N\), 总和为\(3M\), 且最大数不超过\(2M\), 奇数的个数不超过\(M\).
必要性显然,充分性归纳易证。
然后考虑怎么计数: 先不考虑第二个条件,定义\(f(n,m,k)\)表示长度为\(n\)总和为\(m\)奇数不超过\(k\)个的方案数,那么枚举奇数的个数\(i\), 剩下的偶数和为\(m-1\), 有\(f(n,m,k)=\sum^{k}_{i\equiv m(\mod 2)}{n\choose i}{\frac{m-i}{2}+n-1\choose n-1}\).
考虑第二个条件,补集转化,最大数大于\(2M\)意味着剩下的所有数和小于\(M\), 那么不要把和式写出来然后无脑推式子!固定下最大的数的位置\(1\),给第一个数减去\(2M\) (这是个偶数所以不影响奇数那个条件),就是要求\(N\)个数和为\(M\), 第一个数大于\(0\),一共有不超过\(M\)个奇数的方案数。这个因为有奇数个数的限制所以枚举很麻烦,那就再补集转化!转化为\((N-1)\)个数和为\(M\)且奇数不超过\(M\)个。
因此最后答案就是\(f(N,3M,M)-N(f(N,M,M)-f(N-1,M,M))\).
时间复杂度\(O(N+M)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 2e6;
const int P = 998244353;
llong fact[N+3],finv[N+3];
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;}
llong calc(llong n,llong m,llong k)
{
llong ret = 0ll;
for(int i=0; i<=k; i++)
{
if((m-i)&1) continue;
llong tmp = comb(n,i)*comb(((m-i)>>1)+n-1,n-1)%P;
ret = (ret+tmp)%P;
}
// printf("calc %lld %lld %lld=%lld\n",n,m,k,ret);
return ret;
}
int n,m;
int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m);
llong ans = calc(n,3*m,m);
ans = (ans-n*(calc(n,m,m)-calc(n-1,m,m)+P)%P+P)%P;
printf("%lld\n",ans);
return 0;
}
AtCoder AGC036C GP 2 (组合计数)的更多相关文章
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
随机推荐
- python基础数据类型和初级应用
1.整数: int -- 计算和比较 2 -- 10 推位 8421 20 21 -- 2**7 10 - 2 bit_length 二进制的有效占用位数 # 123 # 计算和比较 # 14 0 # ...
- leecode刷题(26)-- 用栈实现队列
leecode刷题(26)-- 用栈实现队列 用栈实现队列 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返 ...
- java中代码块和构造方法以及普通方法的代码执行顺序总结
说实话,这块真的不好理解啊~都怪jvm 执行顺序搞这么复杂,哼╭(╯^╰)╮ 但是 我们能怎么办,只能研究呗!!! !:首先,毫无置疑的,静态代码块在加载时就执行了,所以肯定是最先执行的.... ...
- 分布式的几件小事(二)dubbo的工作原理
1.dubbo的工作原理 ①整体设计 图例说明: 图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口,位于中轴线上的为双方都用到的接口. 图中从下至上分为十层,各层均为单 ...
- 11 Scrapy框架之递归解析和post请求
一.递归爬取解析多页页面数据 - 需求:将糗事百科所有页码的作者和段子内容数据进行爬取切持久化存储 - 需求分析:每一个页面对应一个url,则scrapy工程需要对每一个页码对应的url依次发起请求, ...
- springboot-异步线程调用
启动类:添加@EnableAsync注解 @SpringBootApplication @EnableAsync public class Application{ public static voi ...
- ueditor 后端配置项没有正常加载,上传插件不能正常使用 UTF8 PHP
修改config.json 文件,用DW软件打开,修改好后,保存 若用记事本打开的话修改后保存,无法加载
- springboot中使用拦截器
5.1 回顾SpringMVC使用拦截器步骤 自定义拦截器类,实现HandlerInterceptor接口 注册拦截器类 5.2 Spring Boot使用拦截器步骤 5.2.1 按照S ...
- js事件总汇
Mouse 事件 描述onClick 鼠标点击事件,多用在某个对象控制的范围内的鼠标点击 onDblClick 鼠标双击事件 on ...
- Zookeeper集群快速搭建
Zookeeper集群快速搭建 1.cd /usr/local/zookeeper/conf(如在192.168.212.101服务器) mv zoo_sample.cfg zoo.cfg 修改con ...