层次聚类(Hierarchical Clustering)

一.概念

  层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:

二.合并方法

在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计算方法常用的有三种:

1.单连接聚类(Single-linkage clustering)

  在单连接聚类中,两个类间的距离定义为一个类的所有实例到另一个类的所有实例之间最短的那个距离。如上图中类A(A1,A2),B(B1,B2),C(C1,C2),A类和B类间的最短距离是A1到B1,所以A类与B类更近,所有A和B合并。

2.全连接聚类(Complete-linkage clustering)

  在全连接聚类中,两个类间的距离定义为一个类的所有实例到另一个类的所有实例之间最长的那个距离。图中A类和B类间最长距离是A2到B2,B类和C类最长距离是B1到C1,distance(B1-C1)<distance(A2-B2),所以B类和C类合并在一起。

3.平均连接聚类(Average-linkage clustering)

  在平均连接聚类中,类间的距离为一个类的所有实例到另一个类的所有实例的平均距离。

三.python实现(单连接)

 #!/usr/bin/python
# -*- coding: utf-8 -*- from queue import PriorityQueue
import math
import codecs """
层次聚类
"""
class HCluster: #一列的中位数
def getMedian(self,alist):
tmp = list(alist)
tmp.sort()
alen = len(tmp)
if alen % 2 == 1:
return tmp[alen // 2]
else:
return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2 #对数值型数据进行归一化,使用绝对标准分[绝对标准差->asd=sum(x-u)/len(x),x的标准分->(x-u)/绝对标准差,u是中位数]
def normalize(self,column):
median = self.getMedian(column)
asd = sum([abs(x - median) for x in column]) / len(column)
result = [(x - median) / asd for x in column]
return result def __init__(self,filepath):
self.data={}
self.counter=0
self.queue=PriorityQueue()
line_1=True#开头第一行
with codecs.open(filepath,'r','utf-8') as f:
for line in f:
#第一行为描述信息
if line_1:
line_1=False
header=line.split(',')
self.cols=len(header)
self.data=[[] for i in range(self.cols)]
else:
instances=line.split(',')
toggle=0
for instance in range(self.cols):
if toggle==0:
self.data[instance].append(instances[instance])
toggle=1
else:
self.data[instance].append(float(instances[instance]))
#归一化数值列
for i in range(1,self.cols):
self.data[i]=self.normalize(self.data[i]) #欧氏距离计算元素i到所有其它元素的距离,放到邻居字典中,比如i=1,j=2...,结构如i=1的邻居-》{2: ((1,2), 1.23), 3: ((1, 3), 2.3)... }
#找到最近邻
#基于最近邻将元素放到优先队列中
#data[0]放的是label标签,data[1]和data[2]是数值型属性
rows=len(self.data[0])
for i in range(rows):
minDistance=10000
nearestNeighbor=0
neighbors={}
for j in range(rows):
if i!=j:
dist=self.distance(i,j)
if i<j:
pair=(i,j)
else:
pair=(j,i)
neighbors[j]=(pair,dist)
if dist<minDistance:
minDistance=dist
nearestNeighbor=j
#创建最近邻对
if i<nearestNeighbor:
nearestPair=(i,nearestNeighbor)
else:
nearestPair=(nearestNeighbor,i)
#放入优先对列中,(最近邻距离,counter,[label标签名,最近邻元组,所有邻居])
self.queue.put((minDistance,self.counter,[[self.data[0][i]],nearestPair,neighbors]))
self.counter+=1 #欧氏距离,d(x,y)=math.sqrt(sum((x-y)*(x-y)))
def distance(self,i,j):
sumSquares=0
for k in range(1,self.cols):
sumSquares+=(self.data[k][i]-self.data[k][j])**2
return math.sqrt(sumSquares) #聚类
def cluster(self):
done=False
while not done:
topOne=self.queue.get()
nearestPair=topOne[2][1]
if not self.queue.empty():
nextOne=self.queue.get()
nearPair=nextOne[2][1]
tmp=[]
#nextOne是否是topOne的最近邻,如不是继续找
while nearPair!=nearestPair:
tmp.append((nextOne[0],self.counter,nextOne[2]))
self.counter+=1
nextOne=self.queue.get()
nearPair=nextOne[2][1]
#重新加回Pop出的不相等最近邻的元素
for item in tmp:
self.queue.put(item) if len(topOne[2][0])==1:
item1=topOne[2][0][0]
else:
item1=topOne[2][0]
if len(nextOne[2][0])==1:
item2=nextOne[2][0][0]
else:
item2=nextOne[2][0]
#联合两个最近邻族成一个新族
curCluster=(item1,item2)
#下面使用单连接方法建立新族中的邻居距离元素,一:计算上面新族的最近邻。二:建立新的邻居。如果 item1和item3距离是2,item2和item3距离是4,则在新族中的距离是2
minDistance=10000
nearestPair=()
nearestNeighbor=''
merged={}
nNeighbors=nextOne[2][2]
for key,value in topOne[2][2].items():
if key in nNeighbors:
if nNeighbors[key][1]<value[1]:
dist=nNeighbors[key]
else:
dist=value
if dist[1]<minDistance:
minDistance=dist[1]
nearestPair=dist[0]
nearestNeighbor=key
merged[key]=dist
if merged=={}:
return curCluster
else:
self.queue.put((minDistance,self.counter,[curCluster,nearestPair,merged]))
self.counter+=1 if __name__=='__main__':
hcluser=HCluster('filePath')
cluser=hcluser.cluster()
print(cluser)

参考:1.machine.learning.an.algorithmic.perspective.2nd.edition.

    2.a programmer's guide to data mining

python实现一个层次聚类方法的更多相关文章

  1. Python机器学习——Agglomerative层次聚类

    层次聚类(hierarchical clustering)可在不同层次上对数据集进行划分,形成树状的聚类结构.AggregativeClustering是一种常用的层次聚类算法.   其原理是:最初将 ...

  2. 挑子学习笔记:BIRCH层次聚类

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/6129425.html 本文是“挑子”在学习BIRCH算法过程中的笔记摘录,文中不乏一些个人理解,不当之处望 ...

  3. 聚类算法:K均值、凝聚层次聚类和DBSCAN

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  4. 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  5. python类:magic魔术方法

    http://blog.csdn.net/pipisorry/article/details/50708812 魔术方法是面向对象Python语言中的一切.它们是你可以自定义并添加"魔法&q ...

  6. (转)python类:magic魔术方法

    原文:https://blog.csdn.net/pipisorry/article/details/50708812 版权声明:本文为博主皮皮http://blog.csdn.net/pipisor ...

  7. 【python】利用scipy进行层次聚类

    参考博客: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ 层次 ...

  8. 送你一个Python 数据排序的好方法

    摘要:学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法.最常见的数据分析是使用电子表格.SQL或pandas 完成的.使用 Pandas 的一大优点是它可以处理大量数据 ...

  9. 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN

    层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...

随机推荐

  1. Codeforces 1237E Perfect Balanced Binary Search Tree

    题目链接 Observations 含有 $n$ 个点且 key(以下也称 key 为「权值」)是 1 到 $n$ 的 BST 具有下列性质: 若 $k$ 是一个非根叶子且是个左儿子,则 $k$ 的父 ...

  2. std::tr1::function和bind组件

    C++中std::tr1::function和bind 组件的使用 在C++的TR1中(Technology Report)中包含一个function模板类和bind模板函数,使用它们可以实现类似函数 ...

  3. 检测Python程序本身是否已经在运行

    为runner.py实现一个函数,检测是否有其他的runner.py进程在正在执行? 除主要用到os模块,还用到了第三方模块psutil

  4. # Clion复制提示信息

    Clion复制提示信息 windows: 按着alt 左键点击错误信息(按键点击同时进行) mac:按着option 左键点击错误信息 搞定

  5. Java后端技术面试汇总(第三套)

    1.基础题 • 怎么解决Hash冲突:(开放地址法.链地址法.再哈希法.建立公共溢出区等)• 写出一个必然会产生死锁的伪代码:• Spring IoC涉及到的设计模式:(工厂模式.单利模式..)• t ...

  6. Dubbo架构

    原文链接http://dubbo.apache.org 架构图 节点角色说明 节点 角色说明 Provider 暴露服务的服务提供方 Consumer 调用远程服务的服务消费方 Registry 服务 ...

  7. 大数据学习(1)-shell脚本注意事项

    1.变量=值 (例如STR=abc)  不用加引号,但此时空格不再是空格字符,特殊字符可用于转义 2.等号两侧不能有空格 3.变量名称一般习惯为大写 4.双引号和单引号有区别,双引号仅将空格脱意,单引 ...

  8. ELK电子书籍

    Elasticsearch in Action(英文版).pdfElasticsearch实战 in action(中文版).pdfElasticsearch技术解析与实战.pdfElasticsea ...

  9. 封装H5ToApp方法

    方法一: 新建个 Android studio 项目,用 webview 指定访问你的页面 方法二: 使用工具 cordova  附上地址:http://cordova.axuer.com/docs/ ...

  10. Vue项目里添加特殊字体或 某些字体乱码的问题

    问题:有个西藏的项目因使用藏文,而出现乱码 (一开始不乱的,不知道后台怎么处理...后来不知道为啥,前端乱码了) 解决:字体ttf 格式已下载,在项目中全局引入了 @font-face { font- ...