TensorFlow使用记录 (二): 理解tf.nn.conv2d方法
方法定义
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None)
参数:
- input: 输入的要做卷积的数据体,要求是一个`Tensor`
- filter: 卷积核,要求也是一个`Tensor`, shape= [filter_height, filter_width, in_channels, out_channels], 其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是要做卷积的数据体的通道数 ,out_channel 是卷积核数量。
- strides: 卷积步长(1-D tensor of length 4), shape=[1, strides, strides, 1],第一位和最后一位固定是1
- padding: A `string` from: `"SAME", "VALID"`. "SAME" 表示使用0去填充边界, "VALID"则不填充
data_format: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`.
Specify the data format of the input and output data.
With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels].name: A name for the operation (optional).
具体实现
input shape: [batch, in_height, in_width, in_channels]
filter shape: [filter_height, filter_width, in_channels, out_channels]
计算过程:
1. 将filter展开成2-D matrix, shape: [filter_height*filter_width*in_channels, output_channels]
2. 从input tensor中提取patches构成一个virtual tensor, shape: [batch, out_height, out_width, filter_height*filter_width*in_channels]
3. 对于每一个patch,右乘上1中的filter matrix。即 [batch, out_height, out_width, filter_height*filter_width*in_channels] x [filter_height * filter_width * in_channels, output_channels], 那么输出的shape: [batch, out_height, out_width, output_channels]
【注:必须有 strides[0] = strides[3] = 1】。绝大多数情况下,水平的stride和竖直的stride一样,即strides = [1, stride, stride, 1]。
输出结果的shape计算:
在caffe中是这样的:
out_height =floor(in_height+2*pad-filter_height)/stride+1; floor向下取整
out_width=floor(in_width+2*pad-filter_width)/stride+1
在TensorFlow中是这样的:
"SAME" 类型的padding:
out_height = ceil(in_height / strides[1]); ceil向上取整
out_width = ceil(in_width / strides[2])
"VALID"类型的padding:
out_height = ceil((in_height - filter_height + 1) / striders[1])
out_width = ceil((in_width - filter_width + 1) / striders[2]
验证代码
# -*- coding:utf-8 -*- from __future__ import division
import tensorflow as tf
import numpy as np
import math
import pandas as pd input_arr = np.zeros((12, 15), dtype=np.float32)
number = 0
for row_idx in range(input_arr.shape[0]):
for col_idx in range(input_arr.shape[1]):
input_arr[row_idx][col_idx] = number
number +=1 number = 6
w_arr = np.zeros((2, 3), dtype=np.float32)
for row_idx in range(w_arr.shape[0]):
for col_idx in range(w_arr.shape[1]):
w_arr[row_idx][col_idx] = number
number += 1 stride = [1, 1, 1, 1] # 从卷积的定义【实际上不是卷积,而是cross-correlation】进行计算验证---对VALID类型卷积进行
res_shape_h = int(math.ceil((input_arr.shape[0] - w_arr.shape[0] + 1) / stride[1]))
res_shape_w = int(math.ceil(input_arr.shape[1] - w_arr.shape[1] + 1) / stride[2])
validation_res = np.zeros(shape=(res_shape_h, res_shape_w), dtype=np.float32) for row_idx in range(validation_res.shape[0]):
for col_idx in range(validation_res.shape[1]):
patch = input_arr[row_idx : row_idx+w_arr.shape[0], col_idx : col_idx+w_arr.shape[1]]
# 这里的 * 实际上代表的是点积,即对应元素位置相乘
res = np.sum(patch * w_arr)
validation_res[row_idx][col_idx] = res print('result of convolution from its definition: validation_res')
print(validation_res)
pd.DataFrame(validation_res).to_csv('validation_res.csv', index = False, header=False) # 从TensorFlow实现出发
input_arr = np.reshape(input_arr, [1, input_arr.shape[0], input_arr.shape[1], 1])
w_arr = np.reshape(w_arr, [w_arr.shape[0], w_arr.shape[1], 1, 1]) # 输入Tensor, shape: [1, 12, 15, 1]
net_in = tf.constant(value=input_arr, dtype=tf.float32) # filter, shape: [2, 3, 1, 1]
W = tf.constant(value=w_arr, dtype=tf.float32) # TensorFlow卷积的计算结果
# valid卷积结果, shape: [1, 11, 13, 1]
result_conv_valid = tf.nn.conv2d(net_in, W, stride, 'VALID')
# same卷积结果, shape: [1, 12, 15, 1]
result_conv_smae = tf.nn.conv2d(net_in, W, stride, 'SAME') with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
valid_conv_res, same_conv_res = sess.run([result_conv_valid, result_conv_smae]) print(valid_conv_res.shape)
valid_conv_res = np.reshape(valid_conv_res, [valid_conv_res.shape[1], valid_conv_res.shape[2]])
same_conv_res = np.reshape(same_conv_res, [same_conv_res.shape[1], same_conv_res.shape[2]])
print('TensorFlow con res: valid_conv_res')
print(valid_conv_res)
pd.DataFrame(valid_conv_res).to_csv('conv_res.csv', index=False, header=False)
pd.DataFrame(same_conv_res).to_csv('same_res.csv', index=False, header=False)
TensorFlow使用记录 (二): 理解tf.nn.conv2d方法的更多相关文章
- 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf.nn.conv2d卷积函数之图片轮廓提取
一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf.nn.conv2d 参数介绍
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf入门-tf.nn.conv2d是怎样实现卷积的?
转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...
随机推荐
- IDEA 修改JavaWeb的访问路径
问题描述 对于我这个刚刚使用IDEA不久的新手来说,能够正常运行就不错了,不过到了后面,可能会觉得IDEA给你分配的默认访问路径很不顺手,比如访问的时候需要通过: http://loca ...
- springboot mongodb jpa常用方法整理
官方文档https://docs.spring.io/spring-data/data-mongodb/docs/current/reference/html/index.html 查询: ***** ...
- golang(3):strings和strconv使用 & 时间和日期类型 & 指针类型 & 流程控制 & 函数
strings和strconv使用 . strings.HasPrefix(s string, prefix string) bool: // 判断字符串s是否以prefix开头 . . string ...
- springboot(二十)-配置文件 bootstrap和application区别
用过 Spring Boot 的都知道在 Spring Boot 中有以下两种配置文件 bootstrap (.yml 或者 .properties) application (.yml 或者 .pr ...
- Linux scp命令详解(服务器之间复制文件或目录)
scp:服务器之间复制文件或目录 一.命令格式: scp [-1246BCpqrv] [-c cipher] [-F ssh_config] [-i identity_file] [-l limit] ...
- X-Forwarded-For伪造及防御
使用x-Forward_for插件或者burpsuit可以改包,伪造任意的IP地址,使一些管理员后台绕过对IP地址限制的访问. 防护策略: 1.对于直接使用的 Web 应用,必须使用从TCP连接中得到 ...
- Notepad++ 文件丢失了,找回历史文件方法
一开始我还以为文件丢失找不到了,心凉了半截,后来找到了它的备份路径 C:\Users\Administrator\AppData\Roaming\Notepad++\backup
- mysql的导入导出操作
mysqldump工具基本用法 此方法不适用于大数据备份 备份所有数据库 mysqldump -u root -p --all-databases > all_database_sql 备份my ...
- 前端开发 | 尝试用Markdown写一下近几个月的总结
近期总结 回顾 半年前 半年前,接触了前端一年多(工作半年)的我了解的东西只有下面这些.因为在公司里的工作就是切静态页,捣鼓CMS. HTML (比较简洁的编写HTML) CSS/CSS3 (PC兼容 ...
- linux上搭建单机版hadoop和spark
依赖的安装包 首先hadoop和spark肯定是必须的,而hadoop是用java编写的,spark是由Scala编写的,所以还需要安装jdk和scala. 大数据第三方组件我们统统都安装在/opt目 ...