Description

给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T,求
一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个
比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。

体现了并查集实际作用的一道题,也就是判图连通性。几句总结:

最小化或最大化一个分数时通常可以二分,但是也可以去设法最大or最小化分子分母。二分不好check的话就可以尝试后者。


据说二分带点优化其实是可以的,然而我不会。根据上面那则提示,因为最大边和最小边无法同时分别最小和最大化,所以可以先固定分母(最小边)。然后要求分子尽可能小。就是说找大于最小边的一些边让s到t连通,最小化那个最大边。那么对于最小的最大边,只要从最小边开始从小到大不停加边,直到s与t连通时立即停止即可,找到的一定是最小的最大边,正确性很容易证(最小的可行解之前的所有边都无法使其连通,而当前为第一个可行解,即最小)。于是枚举最小边并查集维护连通性就行,$O(N^{2}α(N))$稍有点卡,但是能过。可以把除法比较转换成乘法比较加一点速。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
typedef double db;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
struct thx{
int u,v,w;
inline bool operator <(const thx&orz)const{
return w<orz.w;
}
}e[N];
int fa[N],n,m,s,t,p=,q=;
inline int Get(int x){return fa[x]^x?fa[x]=Get(fa[x]):x;}
inline int gcd(int a,int b){return b?gcd(b,a%b):a;} int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n),read(m);
for(register int i=;i<=m;++i)read(e[i].u),read(e[i].v),read(e[i].w);
sort(e+,e+m+);read(s),read(t);
for(register int i=;i<=m;++i){
int j;for(j=;j<=n;++j)fa[j]=j;
for(j=i;j<=m;++j){
fa[Get(e[j].u)]=Get(e[j].v);
if(Get(s)==Get(t))break;
}
if(Get(s)==Get(t))if(p*e[i].w>q*e[j].w)p=e[j].w,q=e[i].w;
}
if(p>)printf("IMPOSSIBLE\n");
else p%q==?printf("%d",p/q):printf("%d/%d\n",p/gcd(p,q),q/gcd(p,q));
return ;
}

BZOJ1050 [HAOI2006]旅行comf[并查集判图连通性]的更多相关文章

  1. BZOJ1050: [HAOI2006]旅行comf(并查集 最小生成树)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4021  Solved: 2257[Submit][Status][Discuss] Descript ...

  2. 【BZOJ1050】[HAOI2006]旅行comf 并查集

    [BZOJ1050][HAOI2006]旅行comf Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<300 ...

  3. BZOJ 1050: [HAOI2006]旅行comf( 并查集 )

    将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...

  4. BZOJ 1050: [HAOI2006]旅行comf (并查集 或 单调队列)

    这是建空间后做的第一道题啊= =好水 排序,枚举最小边,然后并查集求出联通时的最大边 或者排次序,从小到大插边,如果插边时最小的边拿掉不会使s与t不联通,就删去。 code: #include< ...

  5. BZOJ-1050 旅行comf 并查集+乱搞

    好久以前codevs上做过的,拿着改了改.. 1050: [HAOI2006]旅行comf Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2194 S ...

  6. bzoj1050[HAOI2006]旅行comf(枚举+贪心+并查集)

    Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大 ...

  7. HYSBZ - 1050(旅行comf 并查集Java实现)

    HYSBZ - 1050(旅行comf Java实现) 原题地址 解法:枚举每一条边,对于这条边,我们需要找到集合中和其值相差最小的最大边,这个集合是指与包括i边在内的ST联通集.对于这一要求,我们只 ...

  8. bzoj1050: [HAOI2006]旅行comf

    Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求一条路径,使得路径上最大 ...

  9. 1050. [HAOI2006]旅行【并查集+枚举】

    Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求 一条路径,使得路径上最 ...

随机推荐

  1. office web apps安装部署,配置https,负载均衡(五)配置服务器场

    前提条件:您已经完成了域控制器的配置,拥有域账号,并且已经安装了OWA启动所需要的必要软件: 具体步骤可以参考: office web apps安装部署,配置https,负载均衡(一)背景介绍 off ...

  2. ubuntu 16.04 关闭开启图形界面

    说明案例:ubuntu16.04 关闭图形界面命令: systemctl disable lightdm.service 开启图形界面命令: ln -s /lib/systemd/system/lig ...

  3. 更改默认浏览器(Windows7)

    更改默认浏览器 第一个方法(最好用): 第一步,先点击左下角WIN 然后点默认程序(画框框的图上) 第二步骤,来到控制面板主页,点击设置程序 第三步骤,左键单击选择要设置为默认浏览器的程序(我用360 ...

  4. Metinfo5.1 /include/common.php 变量覆盖+SQL注入漏洞

  5. java追加文件

    public class AppendToFile { /** * A方法追加文件:使用RandomAccessFile */ public static void appendMethodA(Str ...

  6. Java学习-4

    面向对象的三大特征之一:继承性 主要解决问题:共性抽取 继承关系当中的特点:子类可以拥有父类的“内容”,子类还可以拥有自己专属的内容 定义一个父类的格式(就是定义一个普通类的格式): Public c ...

  7. [转帖]忘记了MariaDB root密码的解决办法

    忘记了MariaDB root密码的解决办法 https://www.cnblogs.com/liaojie970/p/6126322.html 貌似跟 mysql 是一样的. 1.停掉mariaDB ...

  8. PostgreSQL SQL优化之NOT IN问题

    在我们平时写SQL时,如果遇到需要排除某些数据时,往往使用id <> xxx and id <> xxx,进而改进为id not in (xxx, xxx); 这样写没有问题, ...

  9. ORA-00911: invalid character解决方法

    今天在搭建VLS系统后,登录系统测试时发现点击菜单提示错误“ORA-00911:???”.网上很多是因为语句中带分号导致的,但是这次是点开菜单就报错,怀疑是字符集设置的问题. 参考网上的解决方案,添加 ...

  10. PHP中的data()函数

    date()是我们常用的一个日期时间函数,下面我来总结一下关于date()函数的各种形式的用法,有需要学习的朋友可参考. 格式化日期date() 函数的第一个参数规定了如何格式化日期/时间.它使用字母 ...