sklearn学习一
转发说明:by majunman from HIT email:2192483210@qq.com
简介:scikit-learn是数据挖掘和数据分析的有效工具,它建立在 NumPy, SciPy, and matplotlib基础上。开源的但商业不允许
1. Supervised learning
1.1. Generalized Linear Models
1.1.1. Ordinary Least Squares最小二乘法
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_
array([ 0.5, 0.5])
reg-http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
reg.coef_ 是回归函数的结果,即相关系数
具体实验:
print(__doc__) # Code source: Jaques Grobler
# License: BSD 3 clause import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset
diabetes = datasets.load_diabetes() #加载diabetes数据集(sklearn提供的几种数据集之一,该数据是糖尿病数据集) # Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2] #只加载一个特征值 # Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:] # Create linear regression object
regr = linear_model.LinearRegression() # Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) plt.xticks(())
plt.yticks(()) plt.show()
sklearn学习一的更多相关文章
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- sklearn学习总结(超全面)
https://blog.csdn.net/fuqiuai/article/details/79495865 前言sklearn想必不用我多介绍了,一句话,她是机器学习领域中最知名的python模块之 ...
- sklearn学习 第一篇:knn分类
K临近分类是一种监督式的分类方法,首先根据已标记的数据对模型进行训练,然后根据模型对新的数据点进行预测,预测新数据点的标签(label),也就是该数据所属的分类. 一,kNN算法的逻辑 kNN算法的核 ...
- sklearn 学习 第一篇:分类
分类属于监督学习算法,是指根据已有的数据和标签(分类)进行学习,预测未知数据的标签.分类问题的目标是预测数据的类别标签(class label),可以把分类问题划分为二分类和多分类问题.二分类是指在两 ...
- SKlearn | 学习总结
1 简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法 ...
- sklearn学习笔记3
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...
- sklearn学习笔记2
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...
- sklearn学习笔记1
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...
- 莫烦sklearn学习自修第九天【过拟合问题处理】
1. 过拟合问题可以通过调整机器学习的参数来完成,比如sklearn中通过调节gamma参数,将训练损失和测试损失降到最低 2. 代码实现(显示gamma参数对训练损失和测试损失的影响) from _ ...
- 莫烦sklearn学习自修第八天【过拟合问题】
1. 什么是过拟合问题 所谓过拟合问题指的是使用训练样本进行训练时100%正确分类或规划,当使用测试样本时则不能正确分类和规划 2. 代码实战(模拟过拟合问题) from __future__ imp ...
随机推荐
- numpy的logspace产生等比数列
转载至:https://blog.csdn.net/shenpengjianke/article/details/29356755 上一篇介绍了numpy.linspace用于创建等差数列,现在介绍l ...
- Spring中重要的注解
现在大部分的Spring项目都会用到注解.使用注解来替换xml,一行简单的注解就可以解决很多事情.但是你真的懂其中的原理吗. 本文翻译于 https://docs.spring.io/spring-f ...
- zk安装管理
参考: https://www.cnblogs.com/yinzhengjie/p/9209319.html 10.52.110.48 bi-kafka-310.52.48.92 bi-kafka-1 ...
- 2019icpc南昌邀请赛B Polynomial (拉格朗日插值法)
题目链接:https://nanti.jisuanke.com/t/40254 题意: 思路: 这题要用到拉格朗日插值法,网上查了一下,找到一份讲得特别好的: -------------------- ...
- python判断一个数是不是完全平方数
思路: 完全平方数开根号后是一个整数,非完全平方数开根号的话是一个非整数 开根号后取整,如果开根号后是整数的话就不会改变值的大小 取整后再平方,如果值和之前一样,说明是完全平方数 import mat ...
- 大数据之Hadoop完全分布式集群搭建
1.准备阶段 1.1.新建三台虚拟机 Hadoop完全分市式集群是典型的主从架构(master-slave),一般需要使用多台服务器来组建.我们准备3台服务器(关闭防火墙.静态IP.主机名称).如果没 ...
- 客户端实现WebService服务接口
首先,要获得搭建好的WebService服务的WSDL,如要实现国内手机号码归属地查询WEB服务,其WSDL为:http://ws.webxml.com.cn/WebServices/MobileCo ...
- spring基于注解的IoC以及IoC的案例
1.Spring中IoC的常用注解 1.1明确: (1)基于注解的配置和xml的配置要实现的功能都是一样的,都是要降低程序之间的耦合,只是配置的形式不一样 2.案例:使用xml方式和注解方式实现单表的 ...
- 多线程编程-- part 4 线程间的通信
线程间的相互作用 线程之间需要一些协调通信,来共同完成一件任务. Object类相关的方法:notify(),notifyAll(),wait().会被所有的类继承,这些方法是final不能被重写.他 ...
- 在iPhone开发中实现解压缩gzip
在iPhone开发中实现解压缩gzip是本文要介绍的内容,最近做的一个东西中,需要从网络获取xml文件,但是该文件用了gzip压缩的.搜索一 下有人说gzip压缩的用urlrequest可以自己解压, ...