qwq

由于窝太菜了,实在是不会,所以在题解的帮助下过掉了这道题。

写此博客来整理一下思路

正文

传送

简化一下题意:现在有\(n\)行\(m\)列数,选\(k\)个数的合法方案需满足:

1.一行最多选一个

2.一列最多选\(\lfloor \frac{k}{2} \rfloor\)个数

当然,如果你在某一行里选了0,就相当于没有在这一行里选数

选一次对答案的贡献是你选的所有不为零的数的乘积。对于任意的\(k\),只要有合法方案,就能取。

(希望没有把题目变得更复杂叭)

根据上面的要求,我们发现\(k\)的取值范围是\([1,n]\)。而且根据要求2,如果某个方案在满足1的前提下,是不合法的,那么这个方案里面一定有且仅有1列选了超出\(\lfloor \frac{k}{2} \rfloor\)个数,因为不可能有两列选的数同时超过\(\lfloor \frac{k}{2} \rfloor\)个。我们现在知道了不合法方案的一个特征,那么我们不妨试试总方案数-不合法方案数这个思路。

因为 满足1情况的总方案数-满足1而且不合法的方案数=乱选方案数-不满足1或不满足2的方案数 ,所以我们接下来计算方案数都在满足1的条件下来计算。

计算总方案数:设\(all[i][j]\)表示前\(i\)行,每行至多选一个,一共选了\(j\)个的方案数,那么\(all[i][j]=all[i-1][j]+\sum_{l=1}^m{all[i-1][j-1] \times a[i][l]}\)。用\(sum[i]\)表示第\(i\)行所有数的和,那么\(all[i][j]=all[i-1][j]+all[i-1][j-1] \times sum[i]\)

我们再来看看不合法方案怎么算。上面说到一个不合法方案一定只有1行选的数超过了\(\lfloor \frac{k}{2} \rfloor\)个,所以我们可以枚举每一列。但是我们不知道\(k\)。那么我们可以设\(no[i][j][l]\)表示前\(i\)行,该列选了\(j\)个,其他列选了\(l\)个。\(no[i][j][l]=no[i-1][j][l]+no[i-1][j-1][l]\times a[i][j]+no[i-1][j][l-1] \times(sum[i]-a[i][j])\)这样就可以由\(j,l\)确定唯一的\(k\)。枚举列:\(O(m)\),枚举\(i\):\(O(n)\),因为选数的个数最多是\(n\),所以枚举\(j,l\)都是\(O(n)\),总复杂度\(O(mn^3)\)

显然是不够的,需要优化。发现我们其实并不需要具体的\(k\),只需要知道当前列和其他列选的数的差值即可。为什么呢?不妨设当前列选的数为\(x+j\)个,其他列选的数为\(x\)个,那么一共选的数就是\(2x+j\)个。这里\(x\)取值任意(只要合法就行),所以可以\(2x+j\)覆盖所有的\(k\)。所以设\(no[i][j]\)表示前\(i\)行,当前枚举的列比其他列多选了\(j\)个的方案数。

\(no[i][j]=no[i-1][j]+no[i-1][j-1] \times a[i][j]+no[i-1][j+1] \times (sum[i]-a[i][j])\)

注意这里有个坑:枚举到第\(i\)行的时候,当前列最多会比其他列少\(i\)个数,所以\(j\)应该从\(-i\)开始枚举,而不是0。考虑到不能出现负下标,所以在代码中将每个下标+n。

如果这个方案是不合法方案,那么对应的\(j\)一定大于0。

最终答案就是\(sum_{j=1}^n{all[n][j]}-\sum_{j=1}^n{no[n][j]}\)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
inline ll read()
{
char ch=getchar();
ll x=0;bool f=0;
while(ch<'0'||ch>'9')
{
if(ch=='-') f=1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+(ch^48);
ch=getchar();
}
return f?-x:x;
}
const ll mod=998244353;
ll n,m,a[209][2009],sum[109],all[209][2009];
ll no[109][2109];
ll ans;
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read(),sum[i]=(sum[i]+a[i][j])%mod;//保险起见随时随地模一下
all[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=n;j++)
all[i][j]=(all[i-1][j]+all[i-1][j-1]*sum[i]%mod+mod)%mod;
for(int j=1;j<=n;j++)
ans=(ans+all[n][j])%mod;
for(int lie=1;lie<=m;lie++)
{
memset(no,0,sizeof(no));
no[0][n]=1;
for(int i=1;i<=n;i++)
{
for(int j=n-i;j<=n+i;j++)
{
no[i][j]=(no[i-1][j]+no[i-1][j-1]*a[i][lie]%mod+no[i-1][j+1]*(sum[i]-a[i][lie])%mod+mod)%mod;
}
}
for(int j=n+1;j<=2*n;j++)
ans=(ans-no[n][j]+mod)%mod;
}
cout<<ans;
return 0;
}

csp2019 Emiya家今天的饭题解的更多相关文章

  1. CSP2019 Emiya 家今天的饭 题解

    这题在考场上只会O(n^3 m),拿了84分.. 先讲84分,考虑容斥,用总方案减去不合法方案,也就是枚举每一种食材,求用它做超过\(\lfloor \frac{k}{2} \rfloor\) 道菜的 ...

  2. 洛谷P5664 Emiya 家今天的饭 题解 动态规划

    首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...

  3. CSP2019 Emiya 家今天的饭

    Description: 有 \(n\) 中烹饪方法和 \(m\) 种食材,要求: 至少做一种菜 所有菜的烹饪方法各不相同 同种食材的菜的数量不能超过总菜数的一半 求做菜的方案数. Solution1 ...

  4. [CSP-S2019]Emiya 家今天的饭 题解

    CSP-S2 2019 D2T1 很不错的一题DP,通过这道题学到了很多. 身为一个对DP一窍不通的蒟蒻,在考场上还挣扎了1h来推式子,居然还有几次几乎推出正解,然而最后还是只能打个32分的暴搜滚粗 ...

  5. 洛谷P5664 Emiya 家今天的饭 问题分析

    首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...

  6. 【NOIP/CSP2019】D2T1 Emiya 家今天的饭

    这个D2T1有点难度啊 原题: 花了我一下午的时间,作为D2T1的确反常 条件很奇怪,感觉不太直观,于是看数据范围先写了个暴力 写暴力的时候我就注意到了之前没有仔细想过的点,烹饪方式必须不同 虽然a很 ...

  7. 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】

    题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...

  8. P5664 Emiya 家今天的饭

    题面 link 前言 去年把我做自闭的一道题,看了一眼题面,发现只有 t1 有点思路,结果写到一半发现自己读错题了,又只能花时间来重构,结果后面的暴力一点都没写(主要是自己当时不会) 然后,这道题还因 ...

  9. 洛谷 P5664 [CSP-S2019] Emiya 家今天的饭

    链接: P5664 题意: 给出一个 \(n*m\) 的矩阵 \(a\),选 \(k\) 个格子(\(1\leq k\leq n\)),每行最多选一个,每列最多选\(⌊\dfrac k2⌋\) 个,同 ...

随机推荐

  1. 多线程编程-- part5.1 互斥锁之非公平锁-获取与释放

    非公平锁之获取锁 非公平锁和公平锁在获取锁的方法上,流程是一样的:它们的区别主要表现在“尝试获取锁的机制不同”.简单点说,“公平锁”在每次尝试获取锁时,都是采用公平策略(根据等待队列依次排序等待):而 ...

  2. python学习之路入门篇

    本文是up学习python过程中遇到的一些问题及总结归纳,本小节是入门篇. python基本语法 循环.分支不多赘述. 模块:一个.py文件就是一个模块. 文件和异常 模式 含义解释 “r” 读模式 ...

  3. mysql的auto-rehash简介

    今天在看mysql的配置文件的时候,发现有"auto-rehash"不明白什么意思,在此记录一下,auto-rehash是自动补全的意思,就像我们在linux命令行里输入命令的时候 ...

  4. Linux中环境变量文件profile、bashrc、bash_profile之间的区别和联系

    /etc/profile:此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件被执行.并从/etc/profile.d目录的配置文件中搜集shell的设置. 英文描述为: # /etc/pr ...

  5. deep_learning_Function_numpy_newaxis参数

    np.newaxis的作用就是在这一位置增加一个一维,这一位置指的是np.newaxis所在的位置,比较抽象,需要配合例子理解. x1 = np.array([1, 2, 3, 4, 5]) # th ...

  6. laravel-admin 添加图表 Chartjs

    github地址:https://github.com/laravel-admin-extensions/chartjs Installation composer require laravel-a ...

  7. RAID原理详解

    RAID 0(stripe,条带化存储):在RAID级别中最高的存储性能. 原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于他自己的那部分数据请求. ...

  8. Python time、datetime、os、random、sys、hashlib、json、shutil、logging、paramiko、subprocess、ConfigParser、xml、shelve模块的使用

    文章目录: 1. time & datetime模块 2. os模块 3. random模块 4. sys模块 5. hashlib模块 6. json模块 7. shutil模块 8. lo ...

  9. Android九宫格解锁有多少种姿势

    参考知乎:知乎.

  10. RWD(Responsive Web Design)(转)

    The key point is adapting to the user’s needs and device capabilities. Suppose a mobile user will be ...