C++边双缩点,Redundant Paths 分离的路径
一道比较简单的 关于边双的题,个人感觉难度不大。
求出整个图的边双,根据边双的定义我们可以延伸出 边双的任两个点都有至少两种路径来互相抵达(因为其不存在割边) 。不妨将每个边双缩成一个点,样例中的图便变成了一棵树:

为什么呢?因为缩了点之后的图如果存在环,这个环便又可以构成一个边双了。
我们发现只要 将所有的叶子节点(度为1)的节点连起来,整个图便就构成了一个边双。那么我们的做法就很明确了,选取一个度不为1的点作为根,统计度为1的节点的数量n,答案便是(n+1)/2.
#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 5010
#define M 10010
#define LL long long
struct node {
int to,no;
node () {};
node (int T,int No) {
to=T;no=No;
}
};
LL flag,ans,value[M],n,m,num,cntn,DFN[N],IsCut[M],low[N];
vector <node> G[N];
LL read() {
LL f=1,s=0;char a=getchar();
while(!(a>='0'&&a<='9')) { if(a=='-') f=-1 ; a=getchar(); }
while(a>='0'&&a<='9') { s=s*10+a-'0'; a=getchar();}
return f*s;
}
int min(int a,int b) {
if(a<b) return a;
return b;
}
void Tarjan(LL u,LL fano) {
DFN[u]=low[u]=++num;
for(LL i=0;i<G[u].size();i++) {
LL v=G[u][i].to,vno=G[u][i].no;
if(!DFN[v]) {
Tarjan(v,vno);
if(low[v]>DFN[u]) {
IsCut[vno]=1;
cntn++;
}
low[u]=min(low[u],low[v]);
}
else if(DFN[u]>DFN[v] && vno!=fano)
low[u]=min(low[u],DFN[v]);
}
}
bool vis[N];
int belong[M],rel[N],cntno,cnt=1;
void init() {
memset(low,0,sizeof(low));
memset(DFN,0,sizeof(DFN));
memset(IsCut,0,sizeof(IsCut));
memset(vis,0,sizeof(vis));
cin>>n>>m;
for(int i=1;i<=n;i++)
G[i].clear();
cntno=cntn=0;
for(int i=1,u,v,w;i<=m;i++) {
u=read();v=read();
G[u].push_back( node (v,cnt) );
G[v].push_back( node (u,cnt++) );
}
}
int dfs(int u) {
belong[u]=cntno;
for(int i=0,v,vno;i<G[u].size();i++) {
v=G[u][i].to,vno=G[u][i].no;
if(!IsCut[vno] && !belong[v])
dfs(v);
}
}
bool book[N][N];
int main() {
init();
Tarjan(1,-1);
for(int i=1;i<=n;i++)
if(!belong[i]) {
cntno++;
dfs(i);
}
//cout<<cntno<<endl;
for(int i=1;i<=n;i++)
for(int j=0;j<G[i].size();j++) {
int x=belong[i],y=belong[G[i][j].to];
if(x!=y ) {
rel[x]++; //rel统计边双的度
}
}
for(int i=1;i<=n;i++)
if(rel[i]==1)
ans++;
cout<<(ans+1)/2<<endl;
}
C++边双缩点,Redundant Paths 分离的路径的更多相关文章
- Redundant Paths 分离的路径【边双连通分量】
Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- 【bzoj1718】Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 964 Solve ...
- [Usaco2006 Jan] Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1132 Solv ...
- Redundant Paths 分离的路径
Redundant Paths 分离的路径 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她 ...
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )
tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...
- BZOJ1718:[USACO]Redundant Paths 分离的路径(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】
LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...
- 【BZOJ】1718: [Usaco2006 Jan] Redundant Paths 分离的路径
[题意]给定无向连通图,要求添加最少的边使全图变成边双连通分量. [算法]Tarjan缩点 [题解]首先边双缩点,得到一棵树(无向无环图). 入度为1的点就是叶子,两个LCA为根的叶子间合并最高效,直 ...
- [BZOJ1718]:[Usaco2006 Jan] Redundant Paths 分离的路径(塔尖)
题目传送门 题目描述 为了从F个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分 ...
随机推荐
- locale - 地域定义文件的描述
描述 地域 定义文件含有 localedef(1) 命令所需的全部信息. 定义文件由几个小节组成, 一个小节详细地描述地域的一个范畴. 语法 地域定义文件以一个包含有如下关键字的文件头开头: < ...
- Django开发环境配置(win10)
开发工具 pycharm专业版 安装Django pip install Django==2.0 如果不带版本号,默认安装最新版本查看Django 查看版本: python -m django --v ...
- 【转】Linux下的磁盘分区方法
转自:https://www.cnblogs.com/lbole/p/8904298.html 一.硬盘接口类型 硬盘的接口主要有IDE.SATA.SCSI .SAS和光纤通道等五种类型.其中IDE和 ...
- VB中preserve的用法
注:本文转载自:http://zhidao.baidu.com/question/161401549.html ReDim 语句用来定义或重定义原来已经用带空圆括号(没有维数下标)的 Private. ...
- 04javascript03
DOM简介 1.获得元素 <!DOCTYPE html> <html> <head> <title>MyHtml.html</title> ...
- 两张图理解nodeJS
- DevExpress v19.1新版亮点——WinForms篇(二)
行业领先的.NET界面控件DevExpress v19.1终于正式发布,本站将以连载的形式介绍各版本新增内容.在本系列文章中将为大家介绍DevExpress WinForms v19.1中新增的一些控 ...
- 原生js禁止页面滚动
// 开启.禁止页面滚动 bodyScroll: { e(e) { e.preventDefault();// 注意此处代码片段必须这样提出来已保证传入下边两个事件的处理程序一样才生效,分别写到事件处 ...
- 如何判断系统是32位还是64位的linux系统
如何判断系统是32位还是64位的linux系统 某日,需要下载个安装包,忽然忘记了自己的系统是32位还是64位的系统了,一时想不起来怎么查看时32位还是64位,呵呵,随便百度下,就发现有好多方法,这里 ...
- Python---进阶---文件操作---比较文件不同
一.编写一个程序,接受用户输入的内容,并且保存为新的文件 如果用户单独输入:w 表示文件保存退出 --------------------------------------------- file_ ...