题目链接:UVA 811

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation.

Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer \(n\), \(2\le n\le 15\), the number of trees in the forest. The trees are identied by consecutive integers \(1\) to \(n\). Each of the subsequent lines contains \(4\) integers \(x_i,y_i,v_i,l_i\) that describe a single tree. \((x_i,y_i)\) is the position of the tree in the plane, \(v_i\) is its value, and \(l_i\) is the length of fence that can be built using the wood of the tree. \(vi\) and \(li\) are between \(0\) and \(10,000\).

The input ends with an empty test case (n= 0).

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter.

Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00

Solution

题意

有 \(n\) 颗树,每颗树的坐标为 \(x, y\) ,价值为 \(v_i\) 长度为 \(l_i\)。现在要用篱笆将其中一些树围起来,但篱笆制作来源于这些树,即要求砍掉的树能构成篱笆的长度 \(>=\) 剩余树的凸包周长。现在要使得砍掉树的价值之和最小,问需要砍掉哪些树(如果有价值相同的解,就输出砍的树最少的解)。

题解

凸包周长 状态压缩枚举

树的规模比较小,用二进制枚举所有情况即可。

Code

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int maxn = 30; int n;
struct Point {
double x, y;
int v, l;
int id;
Point() {}
Point(double a, double b) : x(a), y(b) {}
bool operator<(const Point &b) const {
if (x < b.x) return 1;
if (x > b.x) return 0;
return y < b.y;
}
bool operator==(const Point &b) const {
if (x == b.x && y == b.y) return 1;
return 0;
}
Point operator-(const Point &b) {
return Point(x - b.x, y - b.y);
}
} p[maxn], stk[maxn], tmp[maxn];
typedef Point Vec; int sgn(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
} double dist(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} double cross(Vec a, Vec b) {
return a.x * b.y - a.y * b.x;
} int Andrew(int l) {
sort(tmp + 1, tmp + 1 + l);
int len = 0;
for (int i = 1; i <= l; ++i) {
if(i > 1 && tmp[i] == tmp[i - 1]) continue; // 会有重复的点, WA了好几次
while (len > 1 && sgn(cross(stk[len] - stk[len - 1], tmp[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = tmp[i];
}
int k = len;
for (int i = l - 1; i >= 1; --i) {
if(i > 1 && tmp[i] == tmp[i - 1]) continue;
while (len > k && sgn(cross(stk[len] - stk[len - 1], tmp[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = tmp[i];
}
return len;
} void solve(int &min_val, int &cur_num, double &re_len, int &ans) {
int size = 1 << n;
for(int bit = 0; bit < size; ++bit) {
int t = 0, cur_val = 0;
double cur_len = 0 ;
for(int i = 0; i < n; ++i) {
if(bit & (1 << i)) {
cur_len += p[i].l;
cur_val += p[i].v;
} else {
tmp[++t] = p[i];
}
}
if(cur_val > min_val) continue;
int cnt = Andrew(t);
double c = 0;
for(int i = 1; i < cnt; ++i) {
c += dist(stk[i], stk[i + 1]);
} if(cur_len >= c) {
if(cur_val < min_val || (cur_val == min_val && n - t < cur_num)) {
min_val = cur_val;
cur_num = n - t;
re_len = cur_len - c;
ans = bit;
}
}
}
}
int main() {
int kase = 0;
while(scanf("%d",&n) && n) {
if(kase) printf("\n");
for(int i = 0; i < n; ++i) {
scanf("%lf%lf%d%d", &p[i].x, &p[i].y, &p[i].v, &p[i].l);
}
int min_val = inf;
int cur_num = inf;
double re_len = 0;
int ans = 0;
solve(min_val, cur_num, re_len, ans);
printf("Forest %d\n", ++kase);
printf("Cut these trees:");
for(int i = 0 ; i < n; ++i) {
if(ans & (1 << i)) {
printf(" %d", i + 1);
}
}
printf("\nExtra wood: %.2lf\n", re_len);
}
return 0;
}

POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)的更多相关文章

  1. poj1873 The Fortified Forest 凸包+枚举 水题

    /* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...

  2. UVA 1508 - Equipment 状态压缩 枚举子集 dfs

    UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457& ...

  3. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  4. 状态压缩+枚举 UVA 11464 Even Parity

    题目传送门 /* 题意:求最少改变多少个0成1,使得每一个元素四周的和为偶数 状态压缩+枚举:枚举第一行的所有可能(1<<n),下一行完全能够由上一行递推出来,b数组保存该位置需要填什么 ...

  5. POJ 1873 The Fortified Forest [凸包 枚举]

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6400   Accepted: 1 ...

  6. Uva5211/POJ1873 The Fortified Forest 凸包

    LINK 题意:给出点集,每个点有个价值v和长度l,问把其中几个点取掉,用这几个点的长度能把剩下的点围住,要求剩下的点价值和最大,拿掉的点最少且剩余长度最长. 思路:1999WF中的水题.考虑到其点的 ...

  7. POJ 1873 - The Fortified Forest 凸包 + 搜索 模板

    通过这道题发现了原来写凸包的一些不注意之处和一些错误..有些错误很要命.. 这题 N = 15 1 << 15 = 32768 直接枚举完全可行 卡在异常情况判断上很久,只有 顶点数 &g ...

  8. POJ 1873 The Fortified Forest 凸包 二进制枚举

    n最大15,二进制枚举不会超时.枚举不被砍掉的树,然后求凸包 #include<stdio.h> #include<math.h> #include<algorithm& ...

  9. POJ 3311 Hie with the Pie(DP状态压缩+最短路径)

    题目链接:http://poj.org/problem?id=3311 题目大意:一个送披萨的,每次送外卖不超过10个地方,给你这些地方之间的时间,求送完外卖回到店里的总时间最小. Sample In ...

随机推荐

  1. tp5 thinkphp 使用phpqrcode生成带Logo的二维码

    1 下载生成二维码类库 composer require aferrandini/phpqrcode 2 点击按钮下载 //二维码下载 public function down_qrcode() { ...

  2. 框架-.Net:.NET框架

    ylbtech-框架-.Net:.NET框架 .NET框架(.NET Framework) 是由微软开发,一个致力于敏捷软件开发(Agile softwaredevelopment).快速应用开发(R ...

  3. mysql 安装运行学习过程中的报错问题

    错误记录(windows端): 问题1:在启动MYSQL时出现问题:“ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' ...

  4. 【React】react&&redux调试工具

    一.React调试工具 1.安装 react-developer-tools,在chrome应用商店进行下载,因为网络限制原因,我们可以使用火狐浏览器进行安装下载 a.打开火狐浏览器的附加组件 b.搜 ...

  5. Java8环境设置

    假设你已经安装在 C:Program Filesjavajdk 目录: 在“我的电脑”右键单击并选择“属性”. 在“高级”选项卡下单击“环境变量”按钮. 现在,改变“Path”变量,因此,它也包含了路 ...

  6. 在apache hadoop2.6 上部署hive 并将hive数据源存储于Mysql

    集成hive 的前提是apache hadoop 集群能够正常启动. hadoop 版本 apach2.6.0  hive 版本:1.2.1 1.安装mysql 并赋予权限: 1.1:创建hive 用 ...

  7. flask获取参数

    <!DOCTYPE html> body, html { width: 100%; height: 100%; } , ::after, ::before { -webkit-box-si ...

  8. 函数节流及手机端点击延迟200ms解决方法

    不论是H5开发还是微信小程序,手机端点击都会有300ms的延迟,在实际项目中,会到此频繁触发,如有接口会频繁的请求接口,除了会引起不必要的多次请求还会导致数据有问题.下面有二种方式来处理这个问题: 1 ...

  9. php调用系统命令的函数的比较

    了解命令的区别并进行直观的选择 这是一篇翻译文章,原作者通过表格的形式更加直观的展现出差异并进行选择 前言 PHP有众多调用系统命令的函数,大致如下: system() exec() passthru ...

  10. Ubuntu16.04+cuda9.0安装教程

    1.安装NVIDIA驱动 首先去官网(http://www.nvidia.cn/Download/index.aspx?lang=cn)查找适配自己电脑GPU的驱动,我的电脑驱动版本如下: 执行如下语 ...