POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)
题目链接:UVA 811
Description
Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation.
Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.
You are to write a program that solves the problem the wizard faced.
Input
The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer \(n\), \(2\le n\le 15\), the number of trees in the forest. The trees are identied by consecutive integers \(1\) to \(n\). Each of the subsequent lines contains \(4\) integers \(x_i,y_i,v_i,l_i\) that describe a single tree. \((x_i,y_i)\) is the position of the tree in the plane, \(v_i\) is its value, and \(l_i\) is the length of fence that can be built using the wood of the tree. \(vi\) and \(li\) are between \(0\) and \(10,000\).
The input ends with an empty test case (n= 0).
Output
For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter.
Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).
Display a blank line between test cases.
Sample Input
6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0
Sample Output
Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16
Forest 2
Cut these trees: 2
Extra wood: 15.00
Solution
题意
有 \(n\) 颗树,每颗树的坐标为 \(x, y\) ,价值为 \(v_i\) 长度为 \(l_i\)。现在要用篱笆将其中一些树围起来,但篱笆制作来源于这些树,即要求砍掉的树能构成篱笆的长度 \(>=\) 剩余树的凸包周长。现在要使得砍掉树的价值之和最小,问需要砍掉哪些树(如果有价值相同的解,就输出砍的树最少的解)。
题解
凸包周长 状态压缩枚举
树的规模比较小,用二进制枚举所有情况即可。
Code
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int maxn = 30;
int n;
struct Point {
double x, y;
int v, l;
int id;
Point() {}
Point(double a, double b) : x(a), y(b) {}
bool operator<(const Point &b) const {
if (x < b.x) return 1;
if (x > b.x) return 0;
return y < b.y;
}
bool operator==(const Point &b) const {
if (x == b.x && y == b.y) return 1;
return 0;
}
Point operator-(const Point &b) {
return Point(x - b.x, y - b.y);
}
} p[maxn], stk[maxn], tmp[maxn];
typedef Point Vec;
int sgn(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
double dist(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double cross(Vec a, Vec b) {
return a.x * b.y - a.y * b.x;
}
int Andrew(int l) {
sort(tmp + 1, tmp + 1 + l);
int len = 0;
for (int i = 1; i <= l; ++i) {
if(i > 1 && tmp[i] == tmp[i - 1]) continue; // 会有重复的点, WA了好几次
while (len > 1 && sgn(cross(stk[len] - stk[len - 1], tmp[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = tmp[i];
}
int k = len;
for (int i = l - 1; i >= 1; --i) {
if(i > 1 && tmp[i] == tmp[i - 1]) continue;
while (len > k && sgn(cross(stk[len] - stk[len - 1], tmp[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = tmp[i];
}
return len;
}
void solve(int &min_val, int &cur_num, double &re_len, int &ans) {
int size = 1 << n;
for(int bit = 0; bit < size; ++bit) {
int t = 0, cur_val = 0;
double cur_len = 0 ;
for(int i = 0; i < n; ++i) {
if(bit & (1 << i)) {
cur_len += p[i].l;
cur_val += p[i].v;
} else {
tmp[++t] = p[i];
}
}
if(cur_val > min_val) continue;
int cnt = Andrew(t);
double c = 0;
for(int i = 1; i < cnt; ++i) {
c += dist(stk[i], stk[i + 1]);
}
if(cur_len >= c) {
if(cur_val < min_val || (cur_val == min_val && n - t < cur_num)) {
min_val = cur_val;
cur_num = n - t;
re_len = cur_len - c;
ans = bit;
}
}
}
}
int main() {
int kase = 0;
while(scanf("%d",&n) && n) {
if(kase) printf("\n");
for(int i = 0; i < n; ++i) {
scanf("%lf%lf%d%d", &p[i].x, &p[i].y, &p[i].v, &p[i].l);
}
int min_val = inf;
int cur_num = inf;
double re_len = 0;
int ans = 0;
solve(min_val, cur_num, re_len, ans);
printf("Forest %d\n", ++kase);
printf("Cut these trees:");
for(int i = 0 ; i < n; ++i) {
if(ans & (1 << i)) {
printf(" %d", i + 1);
}
}
printf("\nExtra wood: %.2lf\n", re_len);
}
return 0;
}
POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)的更多相关文章
- poj1873 The Fortified Forest 凸包+枚举 水题
/* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...
- UVA 1508 - Equipment 状态压缩 枚举子集 dfs
UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457& ...
- 状态压缩+枚举 POJ 3279 Fliptile
题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...
- 状态压缩+枚举 UVA 11464 Even Parity
题目传送门 /* 题意:求最少改变多少个0成1,使得每一个元素四周的和为偶数 状态压缩+枚举:枚举第一行的所有可能(1<<n),下一行完全能够由上一行递推出来,b数组保存该位置需要填什么 ...
- POJ 1873 The Fortified Forest [凸包 枚举]
The Fortified Forest Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6400 Accepted: 1 ...
- Uva5211/POJ1873 The Fortified Forest 凸包
LINK 题意:给出点集,每个点有个价值v和长度l,问把其中几个点取掉,用这几个点的长度能把剩下的点围住,要求剩下的点价值和最大,拿掉的点最少且剩余长度最长. 思路:1999WF中的水题.考虑到其点的 ...
- POJ 1873 - The Fortified Forest 凸包 + 搜索 模板
通过这道题发现了原来写凸包的一些不注意之处和一些错误..有些错误很要命.. 这题 N = 15 1 << 15 = 32768 直接枚举完全可行 卡在异常情况判断上很久,只有 顶点数 &g ...
- POJ 1873 The Fortified Forest 凸包 二进制枚举
n最大15,二进制枚举不会超时.枚举不被砍掉的树,然后求凸包 #include<stdio.h> #include<math.h> #include<algorithm& ...
- POJ 3311 Hie with the Pie(DP状态压缩+最短路径)
题目链接:http://poj.org/problem?id=3311 题目大意:一个送披萨的,每次送外卖不超过10个地方,给你这些地方之间的时间,求送完外卖回到店里的总时间最小. Sample In ...
随机推荐
- python 找到列表中满足某些条件的元素
a = [0, 1, 2, 3, 4, 0, 2, 3, 6, 7, 5] selected = [x for x in a if x in range(1, 5)] # 找到a中属于[1,5)中 ...
- PHP面试 MySQL创建高性能索引考点
MySQL索引 MySQL索引的基础和类型 索引的基础:索引类似于书籍的目录,要想找到一本书的某个特定篇章,需要查找书的目录,定位对应的页码 存储引擎使用类似的方式进行数据查询,先去索引当中找到对应的 ...
- javaScript的事件冒泡事件捕获
(1)冒泡型事件:事件按照从最特定的事件目标到最不特定的事件目标(document对象)的顺序触发. IE 5.5: div -> body -> document IE 6.0: div ...
- js全局变量优点和缺点
全局变量的优点:可以减少变量的个数,减少由于实际参数和形式参数的数据传递带来的时间消耗. 全局变量的缺点: (1)全局变量保存在静态存贮区,程序开始运行时为其分配内存,程序结束释放该内存.与局部变量的 ...
- SpringBoot2.0拦截器 与 1.X版本拦截器 的实现
1.5 版本 先写个拦截器,跟xml配置方式一样,然后将拦截器加入spring容器管理 .接着创建 配置文件类 继承 WebMvcConfigurerAdapter 类,重写父类方法addInter ...
- shell eval命令
1. eval command-line 其中command-line是在终端上键入的一条普通命令行.然而当在它前面放上eval时,其结果是shell在执行命令行之前扫描它两次.如: pipe=&qu ...
- Java7任务并行执行神器:Fork&Join框架
Fork/Join是什么? Fork/Join框架是Java7提供的并行执行任务框架,思想是将大任务分解成小任务,然后小任务又可以继续分解,然后每个小任务分别计算出结果再合并起来,最后将汇总的结果作为 ...
- mybatis自学历程(一)
第一个mybatis程序 IDE:myeclipse2017 jar包:mybatis3.5.2,mybatis依赖包,mysql8.0.17驱动包 注:mybatis包和所需的依赖包,可到http: ...
- 如何安装python运行环境Anaconda
参考视频:https://v.qq.com/x/page/u05499rig9s.html
- go之linux安装
下载地址:https://golang.org/dl/ ubuntu16.04安装过程 官方安装文档:https://golang.org/doc/install?download=go1.11.4. ...