题目链接:https://vjudge.net/problem/11177

题目大意:

  求小于等于 n 的最大反素数。

分析:

  n <= 10^18,而前20个素数的乘积早超过10^18,因此可手动打素数表,再dfs寻找最大反素数。

代码如下:

 #pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std; #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< LL, LL > PLL;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
typedef vector< LL > VL;
typedef vector< VL > VVL;
const double EPS = 1e-;
const int inf = 1e9 + ;
const LL mod = 1e9 + ;
const int maxN = 5e5 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; int T;
LL n;
PLL ans; int primes[] = {, , , , , , , , , , , , , , , }; // x 表示当前处理到第 x 个质数
// ret为当前选择下的质数乘积
// pcnt 为 1~x-1 个质数中,每个质数选择数量+1的乘积
// limit 表示第x个质数选则的上限
// cnt表示第 x 个质数已经选了多少个
inline void dfs(int x = , LL ret = , LL pcnt = , int limit = inf, int cnt = ) {
if(ret > n || limit < cnt) return;
LL tmp = pcnt * (cnt + );
if(ans.sd < tmp || ans.sd == tmp && ans.ft > ret) ans = MP(ret, tmp); if(n / ret >= primes[x])dfs(x, ret * primes[x], pcnt, limit, cnt + ); // 选 primes[x]
if(cnt) dfs(x + , ret, tmp, cnt, ); // 不选 primes[x]
} int main(){
INIT();
cin >> T;
while(T--) {
cin >> n;
ans = MP(inf, -);
dfs();
cout << ans.ft << " " << ans.sd << endl;
}
return ;
}

URAL 1748 The Most Complex Number的更多相关文章

  1. ural 1748 The Most Complex Number 和 丑数

    题目:http://acm.timus.ru/problem.aspx?space=1&num=1748 题意:求n范围内约数个数最多的那个数. Roughly speaking, for a ...

  2. URAL 1748. The Most Complex Number(反素数)

    题目链接 题意 :给你一个n,让你找出小于等于n的数中因子个数最多的那个数,并且输出因子个数,如果有多个答案,输出数最小的那个 思路 : 官方题解 : (1)此题最容易想到的是穷举,但是肯定超时. ( ...

  3. LeetCode 537. 复数乘法(Complex Number Multiplication)

    537. 复数乘法 537. Complex Number Multiplication 题目描述 Given two strings representing two complex numbers ...

  4. LC 537. Complex Number Multiplication

    Given two strings representing two complex numbers. You need to return a string representing their m ...

  5. URAL 1837. Isenbaev&#39;s Number (map + Dijkstra || BFS)

    1837. Isenbaev's Number Time limit: 0.5 second Memory limit: 64 MB Vladislav Isenbaev is a two-time ...

  6. URAL1748. The Most Complex Number

    1748 反素数 素数的个数随大小的递增而递减 可以相同 注意各种超啊 #include <iostream> #include<cstdio> #include<cst ...

  7. [LeetCode] Complex Number Multiplication 复数相乘

    Given two strings representing two complex numbers. You need to return a string representing their m ...

  8. [Swift]LeetCode537. 复数乘法 | Complex Number Multiplication

    Given two strings representing two complex numbers. You need to return a string representing their m ...

  9. LeetCode Complex Number Multiplication

    原题链接在这里:https://leetcode.com/problems/complex-number-multiplication/description/ 题目: Given two strin ...

随机推荐

  1. angular.js实现二级tab切换

    <div class="guide-type"> <h3 ng-class="{true:'active', false:''}[tab == 'pc' ...

  2. PAT_A1131#Subway Map

    Source: PAT A1131 Subway Map (30 分) Description: In the big cities, the subway systems always look s ...

  3. CFile CStdioFile CArchive 文件操作之异同(详细)

    两者的主要区别: 一. CFile类操作文件默认的是Binary模式,CStdioFile类操作文件默认的是Text模式.    在Binary模式下我们必须输入'\r\n',才能起到回车换行的效果, ...

  4. NOI 2018 Day1 T1 归程

    题面见洛谷 难点:  走过有积水的地方之后就需计算路径长了 关键算法:   kruskal重构树 ①原来的 kruskalkruskalkruskal 算法就是用并查集实现的, 但当我们使用 krus ...

  5. linux/unix下setuid/seteuid/setreuid/setresuid

    其中setresuid()具有最清晰的语法: setresuid()被执行的条件有: ①当前进程的euid是root ②三个参数,每一个等于原来某个id中的一个 如果满足以上条件的任意一个,setre ...

  6. C语言注意事项

    #include <stdio.h> int main() { /*********************************************** * 指针使用注意事项: * ...

  7. js异步处理

    一.什么是异步? 我们一般喜欢把异步和同步.并行拿出来比较,我以前的理解总是很模糊,总是生硬地记着“同步就是排队执行,异步就是一起执行”,现在一看,当初简直就是傻,所以我们第一步先把这三个概念搞清楚, ...

  8. JNI Hello World

    1.什么是JNI:               JNI(Java Native Interface):java本地开发接口               JNI是一个协议,这个协议用来沟通java代码和 ...

  9. IT书单-持续更新

    重构:改善既有代码的设计代码整洁之道深入理解Java虚拟机Java并发编程的艺术<修改代码的艺术><程序员的职业素养>代码大全程序员修炼之道深入理解java虚拟机Java并发编 ...

  10. qdatatime大小

    QDateTime time1; QDateTime time2; uint stime = time1.toTime_t(); uint etime = time2.toTime_t(); int ...