交叉验证的原理放在后面,先看函数。

设X是一个9*3的矩阵,即9个样本,3个特征,y是一个9维列向量,即9个标签。现在我要进行3折交叉验证。

执行kFold = KFold(n_splits=3) :其中KFold是一个类,n_split=3表示,当执行KFold的split函数后,数据集被分成三份,两份训练集和一份验证集。

执行index  = kFold.split(X=X):index是一个生成器,每个元素是一个元组,元组里面有两个元素,第一个是训练集的索引,第二个是验证集的索引。因为这里将9个样本分成三份,所以index中有三个这样的元组

之后便可以迭代index来获得训练集和验证集的索引,从而获得训练集和测试集了

下面是代码示例

 import numpy as np
from sklearn.model_selection import KFold a = np.arange(27).reshape(9, 3)
print(a)
b = np.arange(9).reshape(9, 1)
kfold = KFold(n_splits=3, shuffle=True)
index = kfold.split(X=a)
print(list(index))
print(type(index))
index = kfold.split(X=a, y=b)
for train_index, test_index in index:
print("-------------------------------------------------")
print(a[train_index]) #注意如果a是datafram类型就得用a.iloc[tain_index], 因为a[train_index]会被认为是访问列
print(a[test_index])

运行结果如下:

[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
[12 13 14]
[15 16 17]
[18 19 20]
[21 22 23]
[24 25 26]]
[(array([0, 1, 3, 4, 5, 6]), array([2, 7, 8])), (array([1, 2, 3, 4, 7, 8]), array([0, 5, 6])), (array([0, 2, 5, 6, 7, 8]), array([1, 3, 4]))]
<class 'generator'>
-------------------------------------------------
[[ 6 7 8]
[ 9 10 11]
[12 13 14]
[18 19 20]
[21 22 23]
[24 25 26]]
[[ 0 1 2]
[ 3 4 5]
[15 16 17]]
-------------------------------------------------
[[ 0 1 2]
[ 3 4 5]
[ 9 10 11]
[15 16 17]
[21 22 23]
[24 25 26]]
[[ 6 7 8]
[12 13 14]
[18 19 20]]
-------------------------------------------------
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[12 13 14]
[15 16 17]
[18 19 20]]
[[ 9 10 11]
[21 22 23]
[24 25 26]]

Process finished with exit code 0

原理补充:

在机器学习建模过程中,通行的做法通常是将数据分为训练集和测试集。测试集是与训练独立的数据,完全不参与训练,用于最终模型的评估。在训练过程中,经常会出现过拟合的问题,就是模型可以很好的匹配训练数据,却不能很好在预测训练集外的数据。如果此时就使用测试数据来调整模型参数,就相当于在训练时已知部分测试数据的信息,会影响最终评估结果的准确性。通常的做法是在训练数据再中分出一部分做为验证(Validation)数据,用来评估模型的训练效果。

验证数据取自训练数据,但不参与训练,这样可以相对客观的评估模型对于训练集之外数据的匹配程度。模型在验证数据中的评估常用的是交叉验证,又称循环验证。它将原始数据分成K组(K-Fold),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型。这K个模型分别在验证集中评估结果,最后的误差MSE(Mean Squared Error)加和平均就得到交叉验证误差。交叉验证有效利用了有限的数据,并且评估结果能够尽可能接近模型在测试集上的表现,可以做为模型优化的指标使用。

k-交叉验证KFold的更多相关文章

  1. k-折交叉验证(k-fold crossValidation)

    k-折交叉验证(k-fold crossValidation): 在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数 ...

  2. 用交叉验证改善模型的预测表现-着重k重交叉验证

    机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“). 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系 ...

  3. K折-交叉验证

    k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...

  4. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  5. libsvm交叉验证与网格搜索(参数选择)

    首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1 ...

  6. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  7. [深度概念]·K-Fold 交叉验证 (Cross-Validation)的理解与应用

    K-Fold 交叉验证 (Cross-Validation)的理解与应用 我的网站 1.K-Fold 交叉验证概念 在机器学习建模过程中,通行的做法通常是将数据分为训练集和测试集.测试集是与训练独立的 ...

  8. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  9. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  10. K-Fold 交叉验证

    转载--原文地址 www.likecs.com 1.K-Fold 交叉验证概念 在机器学习建模过程中,通行的做法通常是将数据分为训练集和测试集.测试集是与训练独立的数据,完全不参与训练,用于最终模型的 ...

随机推荐

  1. 【CF208E】Blood Cousins

    题目大意:给定一个 N 个点的森林,M 个询问,每次询问对于点 u 来说,有多少个点和 u 有相同的 K 级祖先. 题解:线段树合并适合处理子树贡献的问题. 发现要回答这个询问在点 u 处计算很困难, ...

  2. 在CSS3中,可以利用transform功能来实现文字或图像的旋转、缩放、倾斜、移动这四种类型的变形处理

    CSS3中的变形处理(transform)属 transform的功能分类 1.旋转 transform:rotate(45deg); 该语句使div元素顺时针旋转45度.deg是CSS 3的“Val ...

  3. mysql绿色版的应用

    一.首先下载mysql 1.进入 https://www.oracle.com/index.html 网址 2.拉倒页面的最下面 3. 4.把下好的压缩文件解压出来 二.在DOS命令里面配置 1.先进 ...

  4. Acwing-284-金字塔(区间DP)

    链接: https://www.acwing.com/problem/content/description/286/ 题意: 虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下. ...

  5. qt5--QEvent事件

    QEvent事件是负责事件分发,包括所有事件返回值为true,用户自己处理事件,不向下分发:false系统处理事件---必须有返回值 查看所有事件,在Qt助手中搜索QEvent::Type #incl ...

  6. 随机验证码生成和join 字符串

    函数:string.join() Python中有join()和os.path.join()两个函数,具体作用如下: join(): 连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符) ...

  7. 暑假集训#2 div1 J 四点直角 J - Space Invader 四点共面+跨立实验

    题意:给你四个点,判断能否先依次通过A,B两点,然后再在某个地方只进行一次直角转弯再一次经过C,D两点: #include <iostream> #include <cstdio&g ...

  8. [python]python中**是什么

    作为运算符时 ** 在python里面表示幂运算 传递实参和定义形参(所谓实参就是调用函数时传入的参数,形参则是定义函数是定义的参数)的时候,你还可以使用两个特殊的语法:``*`` ** . 调用函数 ...

  9. spring 手动注册bean

    //将applicationContext转换为ConfigurableApplicationContext ConfigurableApplicationContext configurableAp ...

  10. js将伪数组转换为标准数组的多种方法

    在js中,数组是特殊的对象,凡是对象有的性质,数组都有,数组表示有序数据的集合,而对象表示无序数据的集合. 那伪数组是什么呢,当然它也是对象,伪数组一般具有以下特点: 按索引方式存储数据: 具有len ...