Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

Note:

  • Given target value is a floating point.
  • You may assume k is always valid, that is: k ≤ total nodes.
  • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

Hint:

1. Consider implement these two helper functions:
  i. getPredecessor(N), which returns the next smaller node to N.
  ii. getSuccessor(N), which returns the next larger node to N.
2. Try to assume that each node has a parent pointer, it makes the problem much easier.
3. Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
4. You would need two stacks to track the path in finding predecessor and successor node separately.

270. Closest Binary Search Tree Value 的拓展,270题只要找出离目标值最近的一个节点值,而这道题要找出离目标值最近的k个节点值。

解法1:Brute Force, 中序遍历或者其它遍历,同时维护一个大小为k的max heap。

Java:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
LinkedList<Integer> res = new LinkedList<>();
inOrderTraversal(root, target, k, res);
return res;
} private void inOrderTraversal(TreeNode root, double target, int k, LinkedList<Integer> res) {
if (root == null) {
return;
}
inOrderTraversal(root.left, target, k, res);
if (res.size() < k) {
res.add(root.val);
} else if(res.size() == k) {
if (Math.abs(res.getFirst() - target) > (Math.abs(root.val - target))) {
res.removeFirst();
res.addLast(root.val);
} else {
return;
}
}
inOrderTraversal(root.right, target, k, res);
}
}

Java:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private PriorityQueue<Integer> minPQ;
private int count = 0;
public List<Integer> closestKValues(TreeNode root, double target, int k) {
minPQ = new PriorityQueue<Integer>(k);
List<Integer> result = new ArrayList<Integer>(); inorderTraverse(root, target, k); // Dump the pq into result list
for (Integer elem : minPQ) {
result.add(elem);
} return result;
} private void inorderTraverse(TreeNode root, double target, int k) {
if (root == null) {
return;
} inorderTraverse(root.left, target, k); if (count < k) {
minPQ.offer(root.val);
} else {
if (Math.abs((double) root.val - target) < Math.abs((double) minPQ.peek() - target)) {
minPQ.poll();
minPQ.offer(root.val);
}
}
count++; inorderTraverse(root.right, target, k);
}
} 

Java:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) {
PriorityQueue<Double> maxHeap = new PriorityQueue<Double>(k, new Comparator<Double>() {
@Override
public int compare(Double x, Double y) {
return (int)(y-x);
}
});
Set<Integer> set = new HashSet<Integer>(); rec(root, target, k, maxHeap, set); return new ArrayList<Integer>(set);
} private void rec(TreeNode root, double target, int k, PriorityQueue<Double> maxHeap, Set<Integer> set) {
if(root==null) return;
double diff = Math.abs(root.val-target);
if(maxHeap.size()<k) {
maxHeap.offer(diff);
set.add(root.val);
} else if( diff < maxHeap.peek() ) {
double x = maxHeap.poll();
if(! set.remove((int)(target+x))) set.remove((int)(target-x));
maxHeap.offer(diff);
set.add(root.val);
} else {
if(root.val > target) rec(root.left, target, k, maxHeap,set);
else rec(root.right, target, k, maxHeap, set);
return;
}
rec(root.left, target, k, maxHeap, set);
rec(root.right, target, k, maxHeap, set);
}
}

Java: A time linear solution, The time complexity would be O(k + (n - k) logk). Space complexity is O(k).

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
} Stack<Integer> precedessor = new Stack<>();
Stack<Integer> successor = new Stack<>(); getPredecessor(root, target, precedessor);
getSuccessor(root, target, successor); for (int i = 0; i < k; i++) {
if (precedessor.isEmpty()) {
result.add(successor.pop());
} else if (successor.isEmpty()) {
result.add(precedessor.pop());
} else if (Math.abs((double) precedessor.peek() - target) < Math.abs((double) successor.peek() - target)) {
result.add(precedessor.pop());
} else {
result.add(successor.pop());
}
} return result;
} private void getPredecessor(TreeNode root, double target, Stack<Integer> precedessor) {
if (root == null) {
return;
} getPredecessor(root.left, target, precedessor); if (root.val > target) {
return;
} precedessor.push(root.val); getPredecessor(root.right, target, precedessor);
} private void getSuccessor(TreeNode root, double target, Stack<Integer> successor) {
if (root == null) {
return;
} getSuccessor(root.right, target, successor); if (root.val <= target) {
return;
} successor.push(root.val); getSuccessor(root.left, target, successor);
}
}  

C++:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
priority_queue<pair<double, int>> q;
inorder(root, target, k, q);
while (!q.empty()) {
res.push_back(q.top().second);
q.pop();
}
return res;
}
void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
if (!root) return;
inorder(root->left, target, k, q);
q.push({abs(root->val - target), root->val});
if (q.size() > k) q.pop();
inorder(root->right, target, k, q);
}
};  

类似题目:

[LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值

  

All LeetCode Questions List 题目汇总

[LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II的更多相关文章

  1. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. [LeetCode#272] Closest Binary Search Tree Value II

    Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...

  3. [leetcode]272. Closest Binary Search Tree Value II二叉搜索树中最近的值2

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  4. [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  5. [LeetCode] Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 这道 ...

  6. PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  7. Convert Sorted List to Binary Search Tree——将链表转换为平衡二叉搜索树 &&convert-sorted-array-to-binary-search-tree——将数列转换为bst

    Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in as ...

  8. 108 Convert Sorted Array to Binary Search Tree 将有序数组转换为二叉搜索树

    将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树.此题中,一个高度平衡二叉树是指一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1.示例:给定有序数组: [-10,-3,0,5,9], ...

  9. 41.Validate Binary Search Tree(判断是否为二叉搜索树)

    Level:   Medium 题目描述: Given a binary tree, determine if it is a valid binary search tree (BST). Assu ...

随机推荐

  1. windows 快捷键相关命令

    Mstsc  远程链接 Taskmgr 任务管理器 Regedit  打开注册表 Netstat -ano | find  “80” 查找内容 tasklist /fi "pid eq 57 ...

  2. 006-Zabbix agent on Zabbix server is unreachable for 5 minutes

    环境描述:        环境介绍:CentOS6.5   zabbix3.2.6(zabbix客户端与服务端在一台主机)   1.在安装完zabbix之后,添加客户端,客户端配置(zabbix_ag ...

  3. java面试(反射)05

    1.什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够获取这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取类信息以及动态调用对象内容就称为jav ...

  4. Linux日常之命令sed

    一. 命令sed简介 利用命令sed能够同时处理多个文件多行的内容,可以不对原文件改动,仅把匹配的内容显示在屏幕上,也可以对原文件进行改动,但是不会在屏幕上返回结果,若想查看改动后的文件,可以使用命令 ...

  5. HDU 6215 Brute Force Sorting 模拟双端链表

    一层一层删 链表模拟 最开始写的是一个一个删的 WA #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) mem ...

  6. CentOS6.X系统启动流程

    1.硬件启动阶段 BIOS自检  BIOS的功能由两部分组成,分别是POST码和Runtime服务.POST阶段完成后它将从存储器中被清除,而Runtime服务会被一直保留,用于目标操作系统的启动.B ...

  7. php 的windows集成开发环境

    1.安装视频  https://www.bilibili.com/video/av10274152/?p=5 2.所需的安装包: https://pan.baidu.com/s/1GLnuzkKFIT ...

  8. DOM例子小结(一)

    一.点击按钮切换图片 核心思路: 1.首先获取元素 2.为元素添加点击事件 3.当事件被触发时运行代码 <!DOCTYPE html> <html lang="en&quo ...

  9. linux 下u盘只读

    使用linux不管是centos还是ubuntu的小伙伴都难免遇到插入U盘的时候,不能对U盘进行操作.提示权限不足或者是只读文件系统. 现在教你三行命令教你解决U盘只读文件系统的问题. 1.插入U盘并 ...

  10. WebStorm 在 Mac 版本的基本设置,包括 ES6、Node.js、字体大小等

    WebStorm 在 Mac 和 win 的设置有区别,便于以后用到快速查找,记之. 要设置先点击 WebStorm 字样如下图: 后点击 Preferences 字样如下图: 设置 es6 语法, ...