题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=1969

题解

如果我们把整个图边双联通地缩点,那么最终会形成一棵树的样子。

那么在这棵树上,\(x\) 和 \(y\) 两个点的答案就是它们之间的不在环中的边的数量。

现在考虑动态维护每一条边在不在环中。发现动态删除的话不太好做,所以时光反转,改成插入一条边。

先随便建立一棵生成树,然后如果插入一条非树边,那么两个端点之间的边就都是在环中的边了。

用树剖维护就可以了。


时间复杂度 \(O(q\log^2 n)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} #define lc o << 1
#define rc o << 1 | 1 const int N = 30000 + 7;
const int M = 100000 + 7;
const int QQ = 40000 + 7; int n, m, Q, dfc;
int dep[N], f[N], siz[N], son[N], dfn[N], top[N], pre[N];
int ans[QQ];
std::set<pii> ss; struct Query {int opt, x, y; } qq[QQ]; struct Edge { int to, ne; } g[M << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } inline void dfs1(int x, int fa = 0) {
dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
for fec(i, x, y) if (y != fa && !dep[y] && !ss.count(pii(x, y))) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
}
inline void dfs2(int x, int pa) {
dfn[x] = ++dfc, top[x] = pa, pre[dfc] = x;
if (!son[x]) return; dfs2(son[x], pa);
for fec(i, x, y) if (y != f[x] && y != son[x] && !dfn[y] && !ss.count(pii(x, y))) dfs2(y, y);
} struct Node { int sum, set; } t[N << 2];
inline void build(int o, int L, int R) {
t[o].set = 0;
if (L == R) return t[o].sum = 1, (void)0;
int M = (L + R) >> 1;
build(lc, L, M), build(rc, M + 1, R);
t[o].sum = t[lc].sum + t[rc].sum;
}
inline void qset(int o, int L, int R, int l, int r) {
if (l > r) return;
if (t[o].set) return;
if (l <= L && R <= r) return t[o].sum = 0, t[o].set = 1, (void)0;
int M = (L + R) >> 1;
if (l <= M) qset(lc, L, M, l, r);
if (r > M) qset(rc, M + 1, R, l, r);
t[o].sum = t[lc].sum + t[rc].sum;
}
inline int qsum(int o, int L, int R, int l, int r) {
if (l > r) return 0;
if (t[o].set) return 0;
if (l <= L && R <= r) return t[o].sum;
int M = (L + R) >> 1;
if (r <= M) return qsum(lc, L, M, l, r);
if (l > M) return qsum(rc, M + 1, R, l, r);
return qsum(lc, L, M, l, r) + qsum(rc, M + 1, R, l, r);
} inline void upd(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
qset(1, 1, n, dfn[top[x]], dfn[x]);
x = f[top[x]];
}
if (dep[x] > dep[y]) std::swap(x, y);
qset(1, 1, n, dfn[son[x]], dfn[y]);
}
inline int qry(int x, int y) {
int ans = 0;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) std::swap(x, y);
ans += qsum(1, 1, n, dfn[top[x]], dfn[x]);
x = f[top[x]];
}
if (dep[x] > dep[y]) std::swap(x, y);
return ans += x != y ? qsum(1, 1, n, dfn[son[x]], dfn[y]) : 0;
} inline void work() {
dfs1(1), dfs2(1, 1), build(1, 1, n);
for (int x = 1; x <= n; ++x) for fec(i, x, y)
if (x < y && f[x] != y && f[y] != x && !ss.count(pii(x, y))) upd(x, y);
while (Q) {
int opt = qq[Q].opt, x = qq[Q].x, y = qq[Q].y;
--Q;
if (opt == 0) upd(x, y);
else ans[++ans[0]] = qry(x, y);
}
while (ans[0]) printf("%d\n", ans[ans[0]--]);
} inline void init() {
read(n), read(m);
int opt, x, y;
for (int i = 1; i <= m; ++i) read(x), read(y), adde(x, y);
while (read(opt), ~opt) {
read(x), read(y);
if (opt == 0) ss.insert(pii(x, y)), ss.insert(pii(y, x));
qq[++Q] = (Query){ opt, x, y };
}
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj1969 [Ahoi2005]LANE 航线规划 树链剖分的更多相关文章

  1. BZOJ 1969: [Ahoi2005]LANE 航线规划( 树链剖分 )

    首先我们要时光倒流, 倒着做, 变成加边操作维护关键边. 先随意搞出一颗树, 树上每条边都是关键边(因为是树, 去掉就不连通了)....然后加边(u, v)时, 路径(u, v)上的所有边都变成非关键 ...

  2. 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

  3. BZOJ 1969: [Ahoi2005]LANE 航线规划 [树链剖分 时间倒流]

    题意: 一张图,删除边,求两点之间的割边数量.保证任意时刻图连通 任求一棵生成树,只有树边可能是割边 时间倒流,加入一条边,就是两点路径上的边都不可能是割边,区间覆盖... 然后本题需要把边哈希一下, ...

  4. bzoj1969: [Ahoi2005]LANE 航线规划(树链剖分)

    只有删边,想到时间倒流. 倒着加边,因为保证图连通,所以一开始一定至少是一棵树.我们先建一棵树出来,对于每一条非树边,两个端点在树上这段路径的边就不会变成关键边了,所以将它们对答案的贡献删去,那么直接 ...

  5. [bzoj1969] [Ahoi2005]LANE 航线规划

    tarjan.并查集.树状数组.树链剖分. 时间倒流,变删边为加边. 先求一波边双联通分量,缩点. 题目保证最后还是整张图联通的..所以就是一棵树. 现在的操作就是,将路径上的边权置0(加边时),查询 ...

  6. 洛谷 P2542 [AHOI2005]航线规划 树链剖分_线段树_时光倒流_离线

    Code: #include <map> #include <cstdio> #include <algorithm> #include <cstring&g ...

  7. BZOJ1969: [Ahoi2005]LANE 航线规划(LCT)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 587  Solved: 259[Submit][Status][Discuss] Description ...

  8. luogu2542 航线规划 (树链剖分)

    不会lct,所以只能树剖乱搞 一般这种删边的题都是离线倒着做,变成加边 他要求的结果其实就是缩点以后两点间的距离. 然后先根据最后剩下的边随便做出一个生成树,然后假装把剩下的边当成加边操作以后处理 这 ...

  9. 【BZOJ1969】[Ahoi2005]LANE 航线规划 离线+树链剖分+线段树

    [BZOJ1969][Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由 ...

随机推荐

  1. rf-idf的java实现

    还存在的问题是,对于其中分词借助的库还存在问题 参考此篇链接 http://www.cnblogs.com/ywl925/archive/2013/08/26/3275878.html 具体代码部分: ...

  2. java 中创建线程有哪几种方式?

    Java中创建线程主要有三种方式: 一.继承Thread类创建线程类 (1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务.因此把run()方法称为执行 ...

  3. CMakeLists.txt 语法

    命令不区分大小写(参数区分大小写) add_executable(demo main.cpp main.h main.rc) 用main.cpp源文件,main.h文件,main.rc文件构造可执行文 ...

  4. Linux内核调试方法总结之死锁问题分析

    死锁问题分析 死锁就是多个进程(线程)因为等待别的进程已占有的自己所需要的资源而陷入阻塞的一种状态,死锁状态一旦形成,进程本身是解决不了的,需要外在的推动,才能解决,最重要的是死锁不仅仅影响进程业务, ...

  5. loj#6157 A ^ B Problem

    分析 用并查集维护 每次一个连通块的每个点记录它到当前连通块的根的异或值 对于不符合的情况容易判断 最后判断是否都在一个连通块内然后记录答案即可 代码 #include<bits/stdc++. ...

  6. 非web工程,打jar放shell执行

    作为6年经验的程序员,一直在搞web服务应用开发,今天领导被吐槽了,只会web方面的东东,最基本的打包啥啥都不会.. 一般开发工程都是web项目,突然要求开发非web,不用tomcat装(浪费端口号) ...

  7. VMware 虚拟化编程(14) — VDDK 的高级传输模式详解

    目录 目录 前文列表 虚拟磁盘数据的传输方式 Transport Methods Local File Access NBD and NBDSSL Transport SAN Transport Ho ...

  8. Python 笔试集:什么时候 i = i + 1 并不等于 i += 1?

    ​​增强型赋值语句是经常被使用到的,因为从各种学习渠道中,我们能够得知 i += 1 的效率往往要比 i = i + 1 更高一些(这里以 += 为例,实际上增强型赋值语句不仅限于此).所以我们会乐此 ...

  9. 安装element-ui

    element地址:https://element.eleme.cn/2.0/#/zh-CN/component/quickstart 1.在新建终端 [安装element-ui组件依赖]cnpm i ...

  10. 【HANA系列】SAP HANA 1.0 SPS 11 新特性

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA 1.0 SPS ...