链接:https://www.nowcoder.com/acm/contest/56/E

时间限制:C/C++ 5秒,其他语言10秒

空间限制:C/C++ 716800K,其他语言1433600K
64bit IO Format: %lld

题目描述

给你一个长为n的序列a

m次查询

每次查询一个区间的所有子区间的gcd的和mod1e9+7的结果

输入描述:

第一行两个数n,m
之后一行n个数表示a
之后m行每行两个数l,r表示查询的区间

输出描述:

对于每个询问,输出一行一个数表示答案

输入例子:
5 7
30 60 20 20 20
1 1
1 5
2 4
3 4
3 5
2 5
2 3
输出例子:
30
330
160
60
120
240
100

-->

示例1

输入

5 7
30 60 20 20 20
1 1
1 5
2 4
3 4
3 5
2 5
2 3

输出

30
330
160
60
120
240
100

说明

[1,1]的子区间只有[1,1],其gcd为30
[1,5]的子区间有:
[1,1]=30,[1,2]=30,[1,3]=10,[1,4]=10,[1,5]=10
[2,2]=60,[2,3]=20,[2,4]=20,[2,5]=20
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共330
[2,4]的子区间有:
[2,2]=60,[2,3]=20,[2,4]=20
[3,3]=20,[3,4]=20
[4,4]=20
总共160
[3,4]的子区间有:
[3,3]=20,[3,4]=20
[4,4]=20
总共60
[3,5]的子区间有:
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共120
[2,5]的子区间有:
[2,2]=60,[2,3]=20,[2,4]=20,[2,5]=20
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共240
[2,3]的子区间有:
[2,2]=60,[2,3]=20
[3,3]=20
总共100

备注:

对于100%的数据,有1 <= n , m , ai <= 100000

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

根据一个数的唯一分解,一个r往左边的gcd最多个分成个区间,相同区间内的点到r的gcd是一样的

对于询问(l , r) ,枚举子区间的右端点从l到r,如果子区间右端点为 l到r-1 都处理好了就只需要坐享前面更新的成果,然后更新r为右端点的区间就好了

把询问离线,,因此需要区间更新和区间求和,线段树的就不写了

新学树状数组的区间更新和区间求和,用差分的思想

贴了别人的blog,我也是看了别人的(侵删)http://blog.csdn.net/fsahfgsadhsakndas/article/details/52650026

 #include <bits/stdc++.h>
#define mst(a,b) memset((a),(b), sizeof a)
#define lowbit(a) ((a)&(-a))
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define MP make_pair
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+;
const int maxn=1e5+;
int n,m;
int a[maxn],nx[maxn];
int ans[maxn];
vector<pii>uu[maxn];
int c1[maxn],c2[maxn];
void update(int *bits,int pos,int val){
for(;pos<=n;pos+=lowbit(pos))
bits[pos]=(bits[pos]+val)%mod;
}
int get(int *bits,int pos){
int ret=;
for(;pos;pos-=lowbit(pos))ret=(ret+bits[pos])%mod;
return (ret+mod)%mod;
}
void add(int l,int r,int val){
update(c1,l,val),update(c2,l,1LL*(l-)*val%mod); update(c1,r+,-val),update(c2,r+,-1LL*r*val%mod);
}
int query(int pos){
return (1LL*pos*get(c1,pos)-get(c2,pos)+mod)%mod;
}
int query(int l,int r){
return (query(r)-query(l-)+mod)%mod;
}
int main(){
#ifdef local
freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
#endif
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)scanf("%d",&a[i]),nx[i]=i-;
for(int i=;i<=m;++i){
int l,r;scanf("%d%d",&l,&r);
uu[r].push_back(MP(l,i));
}
for(int i=;i<=n;++i){
for(int j=i;j;j=nx[j])a[j]=__gcd(a[j],a[i]); for(int j=i;nx[j];j=nx[j])
while(nx[j]&&a[j]==a[nx[j]])nx[j]=nx[nx[j]]; for(int j=i;j;j=nx[j])add(nx[j]+,j,a[j]); for(int j=;j<uu[i].size();++j){
pii&k = uu[i][j];
ans[k.second]=query(k.first,i);
}
}
for(int i=;i<=m;++i)printf("%d\n",ans[i]);
return ;
}

wannalfy 挑战赛7 E 珂朵莉与GCD (离线+线段树/树状数组)的更多相关文章

  1. Wannafly挑战赛7 E - 珂朵莉与GCD

    题目描述 给你一个长为n的序列a m次查询 每次查询一个区间的所有子区间的gcd的和mod1e9+7的结果 输入描述: 第一行两个数n,m之后一行n个数表示a之后m行每行两个数l,r表示查询的区间 输 ...

  2. Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数

    Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数 题目描述 给你一个长为n的序列a,有n*(n+1)/2个子区间,问这些子区间里面和为完全平方数的子区间个数 输入描述: 第一行一个数n 第 ...

  3. 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...

  4. [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解

    参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...

  5. 牛客练习赛7 E 珂朵莉的数列

    珂朵莉的数列 思路: 树状数组+高精度 离散化不知道哪里写错了,一直wa,最后用二分写的离散化 哪位路过大神可以帮我看看原来的那个离散化错在哪里啊 通过代码: import java.math.Big ...

  6. 牛客练习赛9 F - 珂朵莉的约数

    题目描述 珂朵莉给你一个长为n的序列,有m次查询 每次查询给两个数l,r 设s为区间[l,r]内所有数的乘积 求s的约数个数mod 1000000007 输入描述: 第一行两个正整数n,m第二行一个长 ...

  7. 牛客练习赛9 B - 珂朵莉的值域连续段

    题目描述 珂朵莉给你一个有根树,求有多少个子树满足其内部节点编号在值域上连续 一些数在值域上连续的意思即其在值域上构成一个连续的区间 输入描述: 第一行有一个整数n,表示树的节点数.接下来n–1行,每 ...

  8. [洛谷P3987]我永远喜欢珂朵莉~

    [洛谷P3987]我永远喜欢珂朵莉~ 题目大意: 给你\(n(n\le10^5)\)个数\(A_{1\sim n}(A_i\le5\times10^5)\),\(m(m\le5\times10^5)\ ...

  9. 洛谷P4344 [SHOI2015]脑洞治疗仪(珂朵莉树)

    传送门 看到区间推倒……推平就想到珂朵莉树 挖脑洞直接assign,填坑先数一遍再assign再暴力填,数数的话暴力数 //minamoto #include<iostream> #inc ...

随机推荐

  1. 【6.12校内test】T1单词序列

    [问题描述] 给出两个单词(开始单词和结束单词)以及一个词典.找出从开始单词转换到结束单词, 所需要的最短转换序列.转换的规则如下: 1.每次只能改变一个字母 2.转换过程中出现的单词(除开始单词和结 ...

  2. Being a Good Boy in Spring Festival

    Being a Good Boy in Spring Festival Problem Description 一年在外 父母时刻牵挂春节回家 你能做几天好孩子吗寒假里尝试做做下面的事情吧 陪妈妈逛一 ...

  3. 洛谷P1029 最大公约数和最小公倍数问题 (简单数学题)

    一直懒的写博客,直到感觉不写不总结没有半点进步,最后快乐(逼着)自己来记录蒟蒻被学弟学妹打压这一年吧... 题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le ...

  4. Centos7 用gogs搭建git仓库

    0.安装步骤 先安装依赖,然后创建数据库,创建git用户,安装Gogs软件,设置启动,访问web界面进行配置 一.Gogs依赖环境 安装Gogs之前需要配置相应的依赖环境,官网介绍的依赖环境如下: 数 ...

  5. maven配置生成可执行的jar:maven-shade-plugin

    默认打包生成的jar是不能直接运行的,因为带有main方法的信息不会添加到mainifest中,需要借助maven-shade-plugin <project> ... <build ...

  6. mybatis工作原理及实现

    对数据库的连接 使用时就创建连接,不使用就立即释放,对数据库进行频繁连接开启和关闭,造成数据库的资源浪费,影响数据库的性能: 解决办法:使用数据库连接池,管理数据库的连接. 2 将sql语句硬编码到j ...

  7. form表单添加富文本编辑器

    <div class="control-group"> <label class="control-label">内容:</lab ...

  8. 缓存---CDN(内容分发网络)

    4.CDN   内容分发网络(content distribution network,CDN)是一种互联的网络系统,它利用更靠近用户的服务器从而更快更可靠的将静态资源分发给用户. cdn主要有以下优 ...

  9. NlData初学者开发篇(ORM)

    一, 简介:NlData是一个个人开发的ORM,为了学习而学习,是基于表达式实现的一个ORM 二,先简单介绍使用,如下,配置是统一接口 NlClient client = new NlClient(n ...

  10. 如何申请百度小程序的appid(目前不支持个人账号申请)

    一.搜索百度智能小程序,并使用百度账号登陆 填写相关资料进入审核阶段,审核成功即可进入百度小程序开发者后台.打开“智能小程序首页”-“设置”-“开发设置”, 查看百度小程序的 AppID