题目:https://loj.ac/problem/2541

看了题解才会……有三点很巧妙。

1.分母如果变动,就很不好。所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是再次选中一个已经选过的人算作没有操作” 。

2.然后要容斥,考虑强制点集 S 的人在 1 号点之后被选、其余随意,那么

  \( ans=\sum\limits_{S} (-1)^{|S|} \sum\limits_{i=0}^{\infty} (1-\frac{w_1 + w_S}{A})^i \frac{w_1}{A} \)

  (其中 A 表示 \( \sum\limits_{i=1}^{n} w_i \) ,\( w_S \) 表示 \( \sum\limits_{i \in S} w_i \) )

  等比数列求和一下,就是 \( ans=\sum\limits_{S} (-1)^{|S|} \frac{w_1}{w_1+w_S} \)

3.注意到 \( \sum w <=1e5 \) ,所以考虑把那个式子里的分母看做多项式的次数!

  那么算一个 \( \prod\limits_{i=2}^{n} (1-x^{w_i}) \)(这是考虑选出一个点集 S 的过程)

  然后就是取 \( x^i \) 的系数 \( a_i \) ,给答案贡献 \( \frac{a_i}{w_1+i} \) ,最后答案再乘一个 \( w_1 \) 。

算那个连乘的式子,可以普通地分治。但注意到含有 k 个 w 的乘积式子的次数不是 k ,所以复杂度不是 \( T(n)=T(n/2)+O(nlogn) \) 。(可能是 n2logn?)

反正把 w 排个序再做就能了。不知道不排序是否也可以。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define vi vector<int>
#define ll long long
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=1e5+,M=(<<)+,mod=;
int upt(int x){while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,w[N],len,r[M],wn[M],wn2[M],inv[M];
void ntt_pre(int n)
{
for(len=;len<=n;len<<=);
for(int R=;R<=len;R<<=)
{
wn[R]=pw(,(mod-)/R);
wn2[R]=pw(,(mod-)-(mod-)/R);
inv[R]=pw(R,mod-);
}
}
void ntt(vi &a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)
{
int Wn=fx?wn2[R]:wn[R];
for(int i=,m=R>>;i<len;i+=R)
for(int j=,w=;j<m;j++,w=(ll)w*Wn%mod)
{
int x=a[i+j],y=(ll)w*a[i+m+j]%mod;
a[i+j]=upt(x+y); a[i+m+j]=upt(x-y);
}
}
if(!fx)return; int iv=inv[len];
for(int i=;i<len;i++)a[i]=(ll)a[i]*iv%mod;
}
vi solve(int L,int R)
{
if(L==R)
{
vi ret; ret.resize(w[L]+);
ret[]=; ret[w[L]]=-;
return ret;
}
int mid=L+R>>;
vi a=solve(L,mid), b=solve(mid+,R);
int lm=a.size()-+b.size()-;
for(len=;len<=lm;len<<=);
for(int i=,j=len>>;i<len;i++)
r[i]=(r[i>>]>>)+((i&)?j:);
a.resize(len); b.resize(len);
ntt(a,); ntt(b,);
for(int i=;i<len;i++)a[i]=(ll)a[i]*b[i]%mod;
ntt(a,);
a.resize(lm+);
return a;
}
int main()
{
n=rdn(); int sm=;
for(int i=;i<=n;i++)
{ w[i]=rdn(); if(i>)sm+=w[i];}//if!!!
ntt_pre(sm);
sort(w+,w+n+);//
vi f=solve(,n); int ans=;
for(int i=;i<=sm;i++)
if(f[i])ans=(ans+(ll)f[i]*pw(upt(w[]+i),mod-))%mod;
ans=(ll)ans*w[]%mod;
printf("%d\n",ans);
return ;
}

LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治的更多相关文章

  1. LOJ #2541「PKUWC2018」猎人杀

    这样$ PKUWC$就只差一道斗地主了 假装补题补完了吧..... 这题还是挺巧妙的啊...... LOJ # 2541 题意 每个人有一个嘲讽值$a_i$,每次杀死一个人,杀死某人的概率为$ \fr ...

  2. loj#2541. 「PKUWC2018」猎人杀

    传送门 思路太清奇了-- 考虑容斥,即枚举至少有哪几个是在\(1\)号之后被杀的.设\(A=\sum_{i=1}^nw_i\),\(S\)为那几个在\(1\)号之后被杀的人的\(w\)之和.关于杀了人 ...

  3. 【LOJ】#2541. 「PKUWC2018」猎人杀

    题解 一道神仙的题>< 我们毙掉一个人后总的w的和会减少,怎么看怎么像指数算法 然而,我们可以容斥-- 设\(\sum_{i = 1}^{n} w_{i} = Sum\) 我们把问题转化一 ...

  4. loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)

    题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...

  5. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  6. [LOJ2541]「PKUWC2018」猎人杀

    loj description 有\(n\)个猎人,每个猎人有一个仇恨度\(w_i\),每个猎人死后会开一枪打死一个还活着的猎人,打中每个猎人的概率与他的仇恨度成正比. 现在你开了第一枪,打死每个猎人 ...

  7. loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】

    题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...

  8. LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]

    传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...

  9. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

随机推荐

  1. java切分查询数据库表

    在实际应用中,我经常用到遇到根据单号查询,单号又是批量如1000个单号,直接1000个in子查询是不行的,子查询是用上限的.如果表中数据达到上百万以上.即使有单号字段有索引查询也是很慢.这时可以用切分 ...

  2. Jenkins+Gitlab+自动化测试配置持续集成

    Jenkins安装在win7上 GitLab安装在docker上 需求:本地提交自动化测试代码在gitlab上后,jenkins自动构建,拉下新提交的自动化代码,并且运行 参考的链接: https:/ ...

  3. 安装mysql数据库-centos7

    mysql官网下载地址:https://dev.mysql.com/downloads/mysql/ 参考安装:https://blog.51cto.com/snowlai/2140451?sourc ...

  4. 【SD系列】SAP SD模块-销售收入科目的配置

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SD系列]SAP SD模块-销售收入科目的配置 ...

  5. LeetCode 337. House Robber III 动态演示

    每个节点是个房间,数值代表钱.小偷偷里面的钱,不能偷连续的房间,至少要隔一个.问最多能偷多少钱 TreeNode* cur mp[{cur, true}]表示以cur为根的树,最多能偷的钱 mp[{c ...

  6. Chrome打开标签页预览

    类似于Microsoft Edge浏览器上的标签页缩略图预览非常方便,其实现在谷歌浏览器正在测试相关的功能,如果想提前体验,就在地址栏输入"chrome://flags"并按下回车 ...

  7. Spring数据库连接池 c3p0、dbcp、spring-jdbc

    在用dbcp的时候 后面加上 destroy-method="close" 销毁的方法没事 但是用 spring的jdbc就会报错 提示找不到close这个方法  这是为什么? D ...

  8. go web编程——路由与http服务

    本文主要讲解go语言web编程中的路由与http服务基本原理. 首先,使用go语言启动一个最简单的http服务: package main import ( "log" " ...

  9. JVM(14)之 类加载机制

    开发十年,就只剩下这套架构体系了! >>>   从本篇博文开始,我们就进入虚拟机类加载机制的学习了.那么什么是类加载呢?当我们写完一个Java类的时候,并不是直接就可以运行的,它还要 ...

  10. JS-03 牛客网练习

    1.很多人都使用过牛客网这个在线编程网站,下面是自己做的该项所有练习,已通过网站和老师检查无误,分享给大家. 2.先说一下题目的位置:牛客网https://www.nowcoder.com/activ ...