GMM demo
# GMM model
# //
library(mvtnorm) set.seed()
n1 =
n2 =
mu1 = c(,)
mu2 = c(-,-)
sigma1 = matrix(c(,.,.,),nrow=)
sigma2 = matrix(c(,.,.,),nrow=)
y1 = rep(,n1)
y2 = rep(,n2)
x1 = rmvnorm(n1, mean=mu1, sigma=sigma1)
x2 = rmvnorm(n2, mean=mu2, sigma=sigma2) x = rbind(x1,x2)
y = rbind(y1,y2) ns =
ngrid = mv.gauss = function(x,y,mu,sigma)
{
nx = length(x)
ny = length(y)
z = matrix(,nrow=ny, ncol=nx)
sigma_inv = solve(sigma)
det_sigma = det(sigma)
for (i in :nx){
for (j in :ny){
z[i,j] = /(*pi*sqrt(det_sigma)) * exp(-t(c(x[i], y[j]) - mu) %*% sigma_inv %*% t(t(c(x[i], y[j]) - mu)))
}
}
return(z)
}
gauss_density = function(x,mu,sigma)
{
nx = length(x)
ny = length(y)
z = matrix(,nrow=ny, ncol=nx)
sigma_inv = solve(sigma)
det_sigma = det(sigma)
value = /(*pi*sqrt(det_sigma)) * exp(-/* t(x - mu) %*% sigma_inv %*% t(t(x - mu))) return(value)
}
plot_contour = function(ngrid, ns, mv.gauss, mu1,sigma1,mu2,sigma2){
x.range1 = seq(mu1[]-ns*sigma1[],mu1[]+ns*sigma1[],length.out=ngrid)
y.range1 = seq(mu1[]-ns*sigma1[],mu1[]+ns*sigma1[],length.out=ngrid) x.range2 = seq(mu2[]-ns*sigma2[],mu2[]+ns*sigma2[],length.out=ngrid)
y.range2 = seq(mu2[]-ns*sigma2[],mu1[]+ns*sigma2[],length.out=ngrid) z1 = mv.gauss(x.range1, y.range1, mu1, sigma1)
z2 = mv.gauss(x.range2, y.range2, mu2, sigma2)
contour(x.range1, y.range1, z1, add=TRUE,col="red", lwd = )
contour(x.range2, y.range2, z2, add=TRUE,col="blue", lwd = )
}
plot_iter = function(ngrid,x1,x2,mv.gauss, mu1,sigma1,mu2,sigma2, iter=){
x = rbind(x1,x2)
plot(x[,], x[,], type='p',
main=sprintf("Iter %d: mu1=(%.2f, %.2f)/(-5,-6) mu2=(%.2f, %.2f)/(0,1)",
iter, mu1[],mu1[], mu2[], mu2[]))
points(mu1[], mu1[], col='red', pch=)
points(mu2[], mu2[], col='blue', pch=)
plot_contour(ngrid,,mv.gauss, mu1,sigma1,mu2,sigma2)
}
obj_value = function(x,phi, mu1, sigma1, mu2, sigma2){
n = dim(x)[]
res =
for (i in i:n){
res = res + log(phi[]*gauss_density(x[i,], mu1, sigma1)+phi[]*gauss_density(x[i,], mu2, sigma2))
}
return(res)
}
plot_iter(ngrid,x1,x2,mv.gauss, mu1,sigma1,mu2,sigma2) mu1_i = c(,)
mu2_i = c(,)
sigma1_i = matrix(c(,,,),nrow=)
sigma2_i = matrix(c(,,,),nrow=)
plot_iter(ngrid,x1,x2,mv.gauss, mu1_i,sigma1_i,mu2_i,sigma2_i,) n = n1+n2
w = array(,dim=c(n,))
phi1 = 0.5
phi2 = 0.5
num_iter =
obj_val = rep(,num_iter)
for (ii in :num_iter){
# E-step
for (i in :n){
w[i,] = phi1 * gauss_density(x[i,], mu1_i, sigma1_i)
w[i,] = phi2 * gauss_density(x[i,], mu2_i, sigma2_i)
tmp = sum(w[i,])
w[i,] = w[i,] / tmp
w[i,] = w[i,] / tmp
} # M-step
phi1 = mean(w[,])
phi2 = mean(w[,])
mu1_i = colSums(w[,]*x) / sum(w[,])
mu2_i = colSums(w[,]*x) / sum(w[,])
tmp = matrix(,nrow=,,ncol=)
mu = mu1_i
for (i in :n){
tmp = tmp + w[i,] * (t(t(x[i,] - mu)) %*% t(x[i,] - mu))
}
sigma1_i = tmp / sum(w[,])
tmp = matrix(,nrow=,ncol=)
mu = mu2_i
for (i in :n){
tmp = tmp + w[i,] * (t(t(x[i,] - mu)) %*% t(x[i,] - mu))
}
sigma2_i = tmp / sum(w[,])
plot_iter(ngrid,x1,x2,mv.gauss, mu1_i,sigma1_i,mu2_i,sigma2_i, ii)
obj_val[ii] = obj_value(x,c(phi1,phi2), mu1_i,sigma1_i, mu2_i, sigma2_i)
}
plot(obj_val,type="l",main="Objective function: log likelihood",xlab="#Iteration")
print(c(phi1, phi2))
print(sigma1_i)
print(sigma2_i)
GMM demo的更多相关文章
- GMM+Kalman Filter+Blob 目标跟踪
转 http://www.cnblogs.com/YangQiaoblog/p/5462453.html ==========图片版================================== ...
- opencv::GMM(高斯混合模型)
GMM方法概述:基于高斯混合模型期望最大化. 高斯混合模型 (GMM) 高斯分布与概率密度分布 - PDF 初始化 初始化EM模型: Ptr<EM> em_model = EM::crea ...
- 通过一个demo了解Redux
TodoList小demo 效果展示 项目地址 (单向)数据流 数据流是我们的行为与响应的抽象:使用数据流能帮我们明确了行为对应的响应,这和react的状态可预测的思想是不谋而合的. 常见的数据流框架 ...
- 很多人很想知道怎么扫一扫二维码就能打开网站,就能添加联系人,就能链接wifi,今天说下这些格式,明天做个demo
有些功能部分手机不能使用,网站,通讯录,wifi基本上每个手机都可以使用. 在看之前你可以扫一扫下面几个二维码先看看效果: 1.二维码生成 网址 (URL) 包含网址的 二维码生成 是大家平时最常接触 ...
- 在线浏览PDF之PDF.JS (附demo)
平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html#skill 下载地址:http://mozilla.gith ...
- 【微框架】Maven +SpringBoot 集成 阿里大鱼 短信接口详解与Demo
Maven+springboot+阿里大于短信验证服务 纠结点:Maven库没有sdk,需要解决 Maven打包找不到相关类,需要解决 ps:最近好久没有写点东西了,项目太紧,今天来一篇 一.本文简介 ...
- vue双向数据绑定原理探究(附demo)
昨天被导师叫去研究了一下vue的双向数据绑定原理...本来以为原理的东西都非常高深,没想到vue的双向绑定真的很好理解啊...自己动手写了一个. 传送门 双向绑定的思想 双向数据绑定的思想就是数据层与 ...
- Android Studio-—使用OpenCV的配置方法和demo以及开发过程中遇到的问题解决
前提: 1.安装Android Studio(过程略) 2.官网下载OpenCV for Android 网址:http:opencv.org/downloads.html 我下载的是下图的版本 3. ...
- iOS之ProtocolBuffer搭建和示例demo
这次搭建iOS的ProtocolBuffer编译器和把*.proto源文件编译成*.pbobjc.h 和 *.pbobjc.m文件时,碰到不少问题! 搭建pb编译器到时没有什么问题,只是在把*.pro ...
随机推荐
- win10上的Django项目实现内网映射
网上有很多关于django项目发布uwsgi模块在 windows上的下载以及安装过程, 可是他们也并没有真正的在windows上使用到这个模块(至少目前在网上还没看到过), 而大部分人就是在Djan ...
- Python 入门之编码
Python 入门之编码 1.编码初识: (1)ASCII码 :256 个 英文1个字节,不支持中文 (2)GBK(国标) : 英文1个字节 中文两个字节 (3)unicode (万国码):英文4个字 ...
- 计算机系统结构总结_Scoreboard and Tomasulo
Textbook:<计算机组成与设计——硬件/软件接口> HI<计算机体系结构——量化研究方法> QR 超标量 前面讲过超标量的概念.超标量的目的就是实现指 ...
- pL/Sql插入语句时报错,对表空间没有权限 对表空间 'USERS' 无权限
进入dba为其授予权限:sqlplus sys/admin as sysdba; 为用户授予权限即可 grant unlimited tablespace to username;
- Label显示时间
package 第十一章; import java.awt.Button; import java.awt.Color; import java.awt.Font; import java.awt.F ...
- 奇葩的狐火浏览器border属性
今天接到一个bug任务,客户反映火狐浏览器访问时某个商品楼层不显示商品.我立即打开我的火狐浏览器发现没有复现这个bug,后来经过一番折腾,才发现火狐浏览器缩放到90%时,商品楼层果然就消失了,而且每台 ...
- python中的@property
@property 可以将python定义的函数“当做”属性访问,从而提供更加友好访问方式,但是有时候setter/getter也是需要的 class People: def __init__(sel ...
- 初学Git——命令总结
首先,感谢廖雪峰老师制作的Git教程:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b0 ...
- 基于linux(CentOS7)数据库性能优化(Postgresql)
基于CentOS7数据库性能优化(Postgresql) 1. 磁盘 a) Barriers IO i. 通过查看linux是否加载libata,确定是否开 ...
- 【洛谷P3959】宝藏
题目大意:比较复杂,点 这里 看题. 题解:对于状态压缩 dp 来讲,阶段的确立十分重要.本题中,采用以层次为阶段进行状压 dp. 设状态 \(f[i][S]\) 表示开凿到深度 \(i\),当前已经 ...