This post addresses a common question that is frequently asked on StackOverflow:

What is the best way to retain active objects—such as running Threads, Sockets,
and AsyncTasks—across
device configuration changes?

To answer this question, we will first discuss some of the common difficulties developers face when using long-running background tasks in conjunction with the Activity lifecycle. Then, we will describe the flaws of two common approaches to solving the problem.
Finally, we will conclude with sample code illustrating the recommended solution, which uses retained Fragments to achieve our goal.

Configuration Changes & Background Tasks

One problem with configuration changes and the destroy-and-create cycle that Activitys go through as a result stems from the fact that these events are unpredictable and may occur at any time. Concurrent background tasks only add to this problem. Assume, for
example, that an Activity starts an AsyncTask and
soon after the user rotates the screen, causing the Activity to be destroyed and recreated. When the AsyncTask eventually
finishes its work, it will incorrectly report its results back to the old Activity instance, completely unaware that a new Activity has been created. As if this wasn't already an issue, the new Activity instance might waste valuable resources by firing up
the background work again, unaware that the oldAsyncTask is
still running. For these reasons, it is vital that we correctly and efficiently retain active objects across Activity instances when configuration changes occur.

Bad Practice: Retain the Activity

Perhaps the hackiest and most widely abused workaround is to disable the default destroy-and-recreate behavior by setting the android:configChanges attribute
in your Android manifest. The apparent simplicity of this approach makes it extremely attractive to developers; Google
engineers
, however, discourage its use. The primary concern is that it requires you to handle device configuration changes manually in code. Handling configuration changes requires you to take many additional steps to ensure that each and every string,
layout, drawable, dimension, etc. remains in sync with the device's current configuration, and if you aren't careful, your application can easily have a whole series of resource-specific bugs as a result.

Another reason why Google discourages its use is because many developers incorrectly assume that settingandroid:configChanges="orientation" (for
example) will magically protect their application from unpredictable scenarios in which the underlying Activity will be destroyed and recreated. This
is not the case. Configuration changes can occur for a number of reasons—not just screen orientation changes. Inserting your device into a display dock, changing the default language, and modifying the device's default font scaling factor are just three
examples of events that can trigger a device configuration change, all of which signal the system to destroy and recreate all currently running Activitys the next time they are resumed. As a result, setting the android:configChanges attribute
is generally not good practice.

Deprecated: Override onRetainNonConfigurationInstance()

Prior to Honeycomb's release, the recommended means of transferring active objects across Activity instances was to override the onRetainNonConfigurationInstance() and getLastNonConfigurationInstance() methods.
Using this approach, transferring an active object across Activity instances was merely a matter of returning the active object inonRetainNonConfigurationInstance() and
retrieving it in getLastNonConfigurationInstance().
As of API 13, these methods have been deprecated in favor of the more Fragment's setRetainInstance(boolean) capability,
which provides a much cleaner and modular means of retaining objects during configuration changes. We discuss this Fragment-based approach in the next section.

Recommended: Manage the Object Inside a Retained Fragment

Ever since the introduction of Fragments in Android 3.0, the recommended means of retaining active objects across Activity instances is to wrap and manage them inside of a retained "worker" Fragment. By default, Fragments are destroyed and recreated along with
their parent Activitys when a configuration change occurs. CallingFragment#setRetainInstance(true) allows
us to bypass this destroy-and-recreate cycle, signaling the system to retain the current instance of the fragment when the activity is recreated. As we will see, this will prove to be extremely useful with Fragments that hold objects like running Threads, AsyncTasks, Sockets,
etc.

The sample code below serves as a basic example of how to retain an AsyncTask across
a configuration change using retained Fragments. The code guarantees that progress updates and results are delivered back to the currently displayed Activity instance and ensures that we never accidentally leak an AsyncTask during
a configuration change. The design consists of two classes, a MainActivity...

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
* This Activity displays the screen's UI, creates a TaskFragment
* to manage the task, and receives progress updates and results
* from the TaskFragment when they occur.
*/
public class MainActivity extends Activity implements TaskFragment.TaskCallbacks { private static final String TAG_TASK_FRAGMENT = "task_fragment"; Private Task Fragments mTaskFragment ; @Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main); FragmentManager fm = getFragmentManager ();
mTaskFragment = ( TaskFragment ) fm . findFragmentByTag ( TAG_TASK_FRAGMENT ); // If the Fragment is non-null, then it is currently being
// retained across a configuration change.
if (mTaskFragment == null) {
mTaskFragment = new TaskFragment();
fm.beginTransaction().add(mTaskFragment, TAG_TASK_FRAGMENT).commit();
} // TODO: initialize views, restore saved state, etc.
} // The four methods below are called by the TaskFragment when new
// progress updates or results are available. The MainActivity
// should respond by updating its UI to indicate the change. @ Override
public void OnPreExecute () { ... } @Override
public void onProgressUpdate(int percent) { ... } @ Override
public void onCancelled () { ... } @ Override
public void onPostExecute () { ... }
}

...and a TaskFragment...

  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
* This Fragment manages a single background task and retains
* itself across configuration changes.
*/
public class TaskFragment extends Fragment { /**
* Callback interface through which the fragment will report the
* task's progress and results back to the Activity.
*/
static interface TaskCallbacks {
void onPreExecute();
void onProgressUpdate(int percent);
void onCancelled();
void onPostExecute();
} Private Task Callbacks mCallbacks ;
private Dummy Task mTask ; /**
* Hold a reference to the parent Activity so we can report the
* task's current progress and results. The Android framework
* will pass us a reference to the newly created Activity after
* each configuration change.
*/
@Override
public void onAttach(Activity activity) {
super.onAttach(activity);
mCallbacks = (TaskCallbacks) activity;
} /**
* This method will only be called once when the retained
* Fragment is first created.
*/
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState); // Retain this fragment across configuration changes.
setRetainInstance(true); // Create and execute the background task.
mTask = new DummyTask();
mTask.execute();
} /**
* Set the callback to null so we don't accidentally leak the
* Activity instance.
*/
@Override
public void onDetach() {
super.onDetach();
mCallbacks = null;
} /**
* A dummy task that performs some (dumb) background work and
* proxies progress updates and results back to the Activity.
*
* Note that we need to check if the callbacks are null in each
* method in case they are invoked after the Activity's and
* Fragment's onDestroy() method have been called.
*/
private class DummyTask extends AsyncTask<Void, Integer, Void> { @Override
protected void onPreExecute() {
if (mCallbacks != null) {
mCallbacks.onPreExecute();
}
} /**
* Note that we do NOT call the callback object's methods
* directly from the background thread, as this could result
* in a race condition.
*/
@Override
protected Void doInBackground(Void... ignore) {
for (int i = 0; !isCancelled() && i < 100; i++) {
SystemClock.sleep(100);
publishProgress(i);
}
return null;
} @Override
protected void onProgressUpdate(Integer... percent) {
if (mCallbacks != null) {
mCallbacks.onProgressUpdate(percent[0]);
}
} @Override
protected void onCancelled() {
if (mCallbacks != null) {
mCallbacks.onCancelled();
}
} @Override
protected void onPostExecute(Void ignore) {
if (mCallbacks != null) {
mCallbacks.onPostExecute();
}
}
}
}

Flow of Events

When the MainActivity starts
up for the first time, it instantiates and adds the TaskFragment to
the Activity's state. TheTaskFragment creates
and executes an AsyncTask and
proxies progress updates and results back to the MainActivity via
the TaskCallbacks interface.
When a configuration change occurs, the MainActivity goes
through its normal lifecycle events, and once created the new Activity instance is passed to the onAttach(Activity) method,
thus ensuring that theTaskFragment will
always hold a reference to the currently displayed Activity instance even after the configuration change. The resulting design is both simple and reliable; the application framework will handle re-assigning Activity instances as they are torn down and recreated,
and the TaskFragment and
its AsyncTask never
need to worry about the unpredictable occurrence of a configuration change. Note also that it is impossible for onPostExecute() to
be executed in between the calls to onDetach() and onAttach(),
as explained in this
StackOverflow answer
 and in my reply to Doug Stevenson in this
Google+ post
 (there is also some discussion about this in the comments below).

Conclusion

Synchronizing background tasks with the Activity lifecycle can be tricky and configuration changes will only add to the confusion. Fortunately, retained Fragments make handling these events very easy by consistently maintaining a reference to its parent Activity,
even after being destroyed and recreated.

A sample application illustrating how to correctly use retained Fragments to achieve this effect is available for download on the Play
Store
. The source code is available on GitHub.
Download it, import it into Eclipse, and modify it all you want!

As always, leave a comment if you have any questions and don't forget to +1 this blog in the top right corner!

Handling Configuration Changes with Fragments的更多相关文章

  1. 创建一个dynamics 365 CRM online plugin (十一) - Handling Configuration data

    Config data 可以在registering step 的时候来配置 配置好的config data 可以使用 constructor 来获取 Secure Config 和 UnSecure ...

  2. Android Configuration change引发的问题及解决方法(转)

    之前在学习Fragment和总结Android异步操作的时候会在很多blog中看到对Configuration Change的讨论,以前做的项目都是固定竖屏的,所以对横竖屏切换以及横竖屏切换对程序有什 ...

  3. Android Configuration change引发的问题及解决方法

    之前在学习Fragment和总结Android异步操作的时候会在很多blog中看到对Configuration Change的讨论,以前做的项目都是固定竖屏的,所以对横竖屏切换以及横竖屏切换对程序有什 ...

  4. Android Fragment使用(三) Activity, Fragment, WebView的状态保存和恢复

    Android中的状态保存和恢复 Android中的状态保存和恢复, 包括Activity和Fragment以及其中View的状态处理. Activity的状态除了其中的View和Fragment的状 ...

  5. Activity声明周期容易出现的问题

    了解activity的生命周期,不仅仅是回答面试官的几个小问题:下面这篇文章不错,截取个人认为优秀的部分分享给大家,欢迎交流.感谢原作者 /** * 示例向我们展示了在 Activity 的配置改变时 ...

  6. 在Activity中使用Thread导致的内存泄漏

    https://github.com/bboyfeiyu/android-tech-frontier/tree/master/issue-7/%E5%9C%A8Activity%E4%B8%AD%E4 ...

  7. [转]Activitys, Threads, & Memory Leaks

    转自:http://www.androiddesignpatterns.com/2013/04/activitys-threads-memory-leaks.html http://www.cnblo ...

  8. spring configuration 注解

    org.springframework.context.annotation @annotation.Target({ElementType.TYPE}) @annotation.Retention( ...

  9. Annotation Type @bean,@Import,@configuration使用--官方文档

    @Target(value={METHOD,ANNOTATION_TYPE}) @Retention(value=RUNTIME) @Documented public @interface Bean ...

随机推荐

  1. JavaWeb返回Json格式数据JQuery Ajax无法解析的问题

    今天在写实验室的傻逼Java Web小项目的时候,有一个需要发布内容的地方,因为想做的让用户感觉优雅一点 所以就是用了Ajax来做,本来很简单的一个小玩意,竟然花了半个多小时的时间,主要是将时间花在了 ...

  2. 17: VUE数据绑定 与 Object.defineProperty

    VUE数据绑定原理:https://segmentfault.com/a/1190000006599500?utm_source=tag-newest Object.defineProperty(): ...

  3. Django中Model进阶操作

    一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 pr ...

  4. tensorflow学习笔记五----------逻辑回归

    在逻辑回归中使用mnist数据集.导入相应的包以及数据集. import numpy as np import tensorflow as tf import matplotlib.pyplot as ...

  5. PyCharm中运行同一个python程序时选择平行窗口运行

    问题描述 当我们进行Socket编程时,客户端可能有多个,原则上如果有n个客户端,那么我们就要编辑n客户端的代码.然而其实我们每个客户端的代码都是相同,如果编辑n遍,将会相当的浪费空间. 解决办法 学 ...

  6. jquery做一个小的轮播插件---有BUG,后续修改

    //首页无缝轮播 ; (function($, window, document, undefined) { $.fn.slider = function(options) { var default ...

  7. 四:JVM调优原理与常见异常处理方案

    在jvm调优之前,我们必须先了解jvm的内存模型与GC回收机制,这些在我前面的文章里面有介绍!接下来我们通过一个案例来调整jvm性能. 一测试案例: 1.1 编写demo import java.te ...

  8. webpack面试题(转载)

    1:webpack打包原理 把所有依赖打包成一个bundle.js文件,通过代码分割成单元片段并按需加载. 2:webpack的优势 (1)       webpack是以commonJS的形式来书写 ...

  9. SubwayPlan

    GitHub:https://github.com/wakerh1/subwayBJ 北京地铁图片: 地铁出行路线规划项目需求及实现概要: 1.设计一种文件格式用于存储地铁信息 2.设计启动程序并读取 ...

  10. mybatis返回自增主键问题踩坑

    1 <insert id="insert" keyProperty="id" useGeneratedKeys="true"
 par ...