Problem Statement

You are given two integer sequences, each of length Na1,…,aN and b1,…,bN.

There are N2 ways to choose two integers i and j such that 1≤i,jN. For each of these N2 pairs, we will compute ai+bj and write it on a sheet of paper. That is, we will write N2 integers in total.

Compute the XOR of these N2 integers.

Definition of XOR

Constraints

  • All input values are integers.
  • 1≤N≤200,000
  • 0≤ai,bi<228

Input

Input is given from Standard Input in the following format:

N
a1 a2 aN
b1 b2 bN

Output

Print the result of the computation.

Sample Input 1

2
1 2
3 4

Sample Output 1

2

On the sheet, the following four integers will be written: 4(1+3),5(1+4),5(2+3)and 6(2+4).

Sample Input 2

6
4 6 0 0 3 3
0 5 6 5 0 3

Sample Output 2

8

Sample Input 3

5
1 2 3 4 5
1 2 3 4 5

Sample Output 3

2

Sample Input 4

1
0
0

Sample Output 4

0

题意:
给你两个含有n个数的数组a,b
然后我们对每一个a[i] 加上 b[j] 得到的数,把这些数全部异或起来,问最后的异或值是多少? 思路:
首先我们对每一个数进行二进制拆分,对每一位进行讨论,
只需要讨论二进制的第x位,在所有相加出来得到的数中是奇数个还是偶数个,
如果是奇数个就对答案有贡献,贡献值为 1<<x,偶数个就没有贡献。
然后问题转化为 我们要咋知道 有多少对 a[i] + b[j] 的第x位为1 由于我们每一步只讨论a[i]+b[j] 的第x位,我们可以只看a[i] 和 b[j] 的 二进制后 x 位,
因为我们只需要考虑 x位的情况就知道了 a[i]+b[j] 的 第x位情况,
那么我们在枚举第x位的时候,把a,b数组对 2的x+1次方 取模 ,即可得到每个数的二进制后x位。 然后利用这个结论,
对于一对数 a[i] +b[j] = num, 如果我们想要num的二进制第x位为1,需要满足:
num <= a[i]+b[j] <2*num
3*num <= a[i]+b[j] < 4*num 这样我们就可以在每一次取模后的数组,对其中一个数组进行排序,然后利用二分找到满足条件的区间,
通过区间的长度相加以来判定最终的满足x位是1的数量的奇偶性,来判定 是否在答案上加上贡献。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = ; while (b) {if (b % )ans = ans * a % MOD; a = a * a % MOD; b /= ;} return ans;}
inline void getInt(int* p);
const int maxn = ;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int a[maxn];
int b[maxn];
int n;
int c[maxn];
int d[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin >> n;
repd(i, , n)
{
cin >> a[i];
}
repd(i, , n)
{
cin >> b[i];
}
int base = ;
ll ans = 0ll;
for (int i = ; i <= ; i++)
{
repd(j, , n)
{
c[j] = a[j] % ( * base);
d[j] = b[j] % ( * base);
}
sort(d + , d + + n);
int num = ;
repd(j, , n)
{
int r = lower_bound(d + , d + + n, * base - c[j]) - d - ;
int l = lower_bound(d + , d + + n, base - c[j]) - d - ;
num += r - l + ;
r = lower_bound(d + , d + + n, * base - c[j]) - d - ;
l = lower_bound(d + , d + + n, * base - c[j]) - d - ;
num += r - l + ;
}
if (num & )
{
ans += 1ll * base;
}
base *= ;
}
cout << ans << endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}


AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)的更多相关文章

  1. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  2. AtCoder Regular Contest 092 B Two Sequences

    题目大意 给定两个长为 $n$ 个整数序列 $a_1, \dots, a_n$ 和 $b_1, \dots, b_n$ .求所有 $a_i + b_j$($1\le i, j\le n$)的 XOR ...

  3. 思维定势--AtCoder Regular Contest 092 D - Two Sequences

    $n \leq 100000$的俩序列,数字范围$2^{28}$,问所有$a_i+b_j$的$n^2$个数字的异或和. 这种东西肯定是按位考虑嘛,从低位开始然后补上进位.比如说第一位俩串分别有$c$个 ...

  4. Atcoder Regular Contest 092 D - Two Faced Edges(图论+bitset 优化)

    Atcoder 题面传送门 & 洛谷题面传送门 orz ymx,ymx ddw %%% 首先既然题目要我们判断强连通分量个数是否改变,我们首先就将原图 SCC 缩个点呗,缩完点后我们很自然地将 ...

  5. AtCoder Regular Contest 092 C D E F

    C - 2D Plane 2N Points 题意 二维平面上有\(N\)个红点,\(N\)个蓝点,一个红点和一个蓝点能配成一对当且仅当\(x_r<x_b\)且\(y_r<y_b\). 问 ...

  6. AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  7. Atcoder Regular Contest 092 A 的改编

    原题地址 题目大意 给定平面上的 $n$ 个点 $p_1, \dots, p_n$ .第 $i$ 点的坐标为 $(x_i, y_i)$ .$x_i$ 各不相同,$y_i$ 也各不相同.若两点 $p_i ...

  8. AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  9. 【AtCoder Regular Contest 092】C.2D Plane 2N Points【匈牙利算法】

    C.2D Plane 2N Points 题意:给定N个红点二维坐标N个蓝点二维坐标,如果红点横纵坐标都比蓝点小,那么它们能够构成一组.问最多能构成多少组. 题解:把满足要求的红蓝点连线,然后就是匈牙 ...

随机推荐

  1. js运行原理

    https://www.youtube.com/watch?v=8aGhZQkoFbQ

  2. 电脑出现了一块tap window adapter v9 网卡 以及虚拟机桥接模式无法通信原因

    计算机与外界局域网的连接是通过主机箱内插入一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡).网络接口板又称为通信适配器或网络适配器(network adapter)或网络接口卡NIC(Ne ...

  3. 线性时间求取第 K 大数

    求 Top K 的算法主要有基于快速排序的和基于堆的这两种,它们的时间复杂度都为 \(O(nlogK)\).借助于分治思想,以及快速排序的区间划分,我们可以做到 \(O(n)\) 时间复杂度.具体算法 ...

  4. symbol,iterator,generator

    1.symbol是在ES6中引入的一种基本数据类型,因为symbol是不重复.唯一的数据特性,symbol设计是被用来表示对象内部的私有属性的.     symbol.for与symbol.keyfo ...

  5. 【漏洞复现】局域网 ARP 中间人攻击 获取他人账号密码

    日期:2019-07-18 14:24:42 更新: 作者:Bay0net 介绍:如何在局域网内,窃取其他用户的账号密码? 0x01. 漏洞环境 攻击工具 arpspoof 基本用法: arpspoo ...

  6. VS Code 使用Git进行版本控制

    在Windows上安装Git:msysgit是Windows版的Git,从https://git-for-windows.github.io下载 Git安装到环境变量里,确保任意路径可以访问:将git ...

  7. cocos2dx基础篇(14) 滚动视图CCScrollView

    [3.x]     (1)去掉 "CC"     (2)滚动方向         > CCScrollViewDirection 改为强枚举 ScrollView::Dire ...

  8. 深入理解java:2. 多线程机制

    引言 很多人都对其中的一些概念不够明确,如同步.并发等等,让我们先理清一些概念,以免产生误会. 多线程:指的是这个程序(一个进程)运行时,产生了不止一个线程. 并行与并发: 并行:多个cpu实例或者多 ...

  9. Balanced Binary Tree(平衡二叉树)

    来源:https://leetcode.com/problems/balanced-binary-tree Given a binary tree, determine if it is height ...

  10. 第六周总结&第四次实验报告

    实验四 类的继承 一. 实验目的 (1) 掌握类的继承方法: (2) 变量的继承和覆盖,方法的继承.重载和覆盖实现: 二. 实验内容 三.实验过程 实验代码 package Shiyan4; publ ...