AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)
Problem Statement
You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN.
There are N2 ways to choose two integers i and j such that 1≤i,j≤N. For each of these N2 pairs, we will compute ai+bj and write it on a sheet of paper. That is, we will write N2 integers in total.
Compute the XOR of these N2 integers.
Definition of XOR
Constraints
- All input values are integers.
- 1≤N≤200,000
- 0≤ai,bi<228
Input
Input is given from Standard Input in the following format:
N
a1 a2 … aN
b1 b2 … bN
Output
Print the result of the computation.
Sample Input 1
2
1 2
3 4
Sample Output 1
2
On the sheet, the following four integers will be written: 4(1+3),5(1+4),5(2+3)and 6(2+4).
Sample Input 2
6
4 6 0 0 3 3
0 5 6 5 0 3
Sample Output 2
8
Sample Input 3
5
1 2 3 4 5
1 2 3 4 5
Sample Output 3
2
Sample Input 4
1
0
0
Sample Output 4
0 题意:
给你两个含有n个数的数组a,b
然后我们对每一个a[i] 加上 b[j] 得到的数,把这些数全部异或起来,问最后的异或值是多少? 思路:
首先我们对每一个数进行二进制拆分,对每一位进行讨论,
只需要讨论二进制的第x位,在所有相加出来得到的数中是奇数个还是偶数个,
如果是奇数个就对答案有贡献,贡献值为 1<<x,偶数个就没有贡献。
然后问题转化为 我们要咋知道 有多少对 a[i] + b[j] 的第x位为1 由于我们每一步只讨论a[i]+b[j] 的第x位,我们可以只看a[i] 和 b[j] 的 二进制后 x 位,
因为我们只需要考虑 x位的情况就知道了 a[i]+b[j] 的 第x位情况,
那么我们在枚举第x位的时候,把a,b数组对 2的x+1次方 取模 ,即可得到每个数的二进制后x位。 然后利用这个结论,
对于一对数 a[i] +b[j] = num, 如果我们想要num的二进制第x位为1,需要满足:
num <= a[i]+b[j] <2*num
3*num <= a[i]+b[j] < 4*num 这样我们就可以在每一次取模后的数组,对其中一个数组进行排序,然后利用二分找到满足条件的区间,
通过区间的长度相加以来判定最终的满足x位是1的数量的奇偶性,来判定 是否在答案上加上贡献。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = ; while (b) {if (b % )ans = ans * a % MOD; a = a * a % MOD; b /= ;} return ans;}
inline void getInt(int* p);
const int maxn = ;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int a[maxn];
int b[maxn];
int n;
int c[maxn];
int d[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin >> n;
repd(i, , n)
{
cin >> a[i];
}
repd(i, , n)
{
cin >> b[i];
}
int base = ;
ll ans = 0ll;
for (int i = ; i <= ; i++)
{
repd(j, , n)
{
c[j] = a[j] % ( * base);
d[j] = b[j] % ( * base);
}
sort(d + , d + + n);
int num = ;
repd(j, , n)
{
int r = lower_bound(d + , d + + n, * base - c[j]) - d - ;
int l = lower_bound(d + , d + + n, base - c[j]) - d - ;
num += r - l + ;
r = lower_bound(d + , d + + n, * base - c[j]) - d - ;
l = lower_bound(d + , d + + n, * base - c[j]) - d - ;
num += r - l + ;
}
if (num & )
{
ans += 1ll * base;
}
base *= ;
}
cout << ans << endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)的更多相关文章
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 092 B Two Sequences
题目大意 给定两个长为 $n$ 个整数序列 $a_1, \dots, a_n$ 和 $b_1, \dots, b_n$ .求所有 $a_i + b_j$($1\le i, j\le n$)的 XOR ...
- 思维定势--AtCoder Regular Contest 092 D - Two Sequences
$n \leq 100000$的俩序列,数字范围$2^{28}$,问所有$a_i+b_j$的$n^2$个数字的异或和. 这种东西肯定是按位考虑嘛,从低位开始然后补上进位.比如说第一位俩串分别有$c$个 ...
- Atcoder Regular Contest 092 D - Two Faced Edges(图论+bitset 优化)
Atcoder 题面传送门 & 洛谷题面传送门 orz ymx,ymx ddw %%% 首先既然题目要我们判断强连通分量个数是否改变,我们首先就将原图 SCC 缩个点呗,缩完点后我们很自然地将 ...
- AtCoder Regular Contest 092 C D E F
C - 2D Plane 2N Points 题意 二维平面上有\(N\)个红点,\(N\)个蓝点,一个红点和一个蓝点能配成一对当且仅当\(x_r<x_b\)且\(y_r<y_b\). 问 ...
- AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)
Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...
- Atcoder Regular Contest 092 A 的改编
原题地址 题目大意 给定平面上的 $n$ 个点 $p_1, \dots, p_n$ .第 $i$ 点的坐标为 $(x_i, y_i)$ .$x_i$ 各不相同,$y_i$ 也各不相同.若两点 $p_i ...
- AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)
Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...
- 【AtCoder Regular Contest 092】C.2D Plane 2N Points【匈牙利算法】
C.2D Plane 2N Points 题意:给定N个红点二维坐标N个蓝点二维坐标,如果红点横纵坐标都比蓝点小,那么它们能够构成一组.问最多能构成多少组. 题解:把满足要求的红蓝点连线,然后就是匈牙 ...
随机推荐
- 《Effective Java》读书笔记 - 9.异常
Chapter 9 Exceptions Item 57: Use exceptions only for exceptional conditions 这条item的意思就是,千万不要用except ...
- Oracle与MySQL的概念区别
MySQL MySQL是一个以用户为中心的概念,一个用户下,拥有多个数据库,一个数据库下拥有多个数据库表!然而Oracle与MySQL有很大的不同!! Oracle Oracle中,一个数据库拥有多个 ...
- C#实现读取指定盘符硬盘序列号的方法
文章主要介绍了C#实现读取指定盘符硬盘序列号的方法,涉及C#针对硬件属性的相关操作技巧,具有一定参考借鉴价值,需要的朋友可以参考下 本文实例讲述了C#实现读取指定盘符硬盘序列号的方法.分享给大家供 ...
- MySQL表碎片清理
MySQL大表清理 生产环境data库业务表base_data大小:500G,data_free:31G mysql> SELECT table_schema,table_name,data_f ...
- DeepFaceLab报错,integer division or modulo by zero
DeepFaceLab的集成环境在众多换脸软件中是做的最好的.但是使用过程也会出现一些错误,主要的错误有两个,一个是你配置太低OOM了,主要体现显存太低.第二个是版本不对应.比如你原先用的cuda9. ...
- JAVA中对null进行强制类型转换(null可以强转为任意对象,并执行对象的静态方法)
今天很好奇,对null进行强转会不会抛错.做了如下测试得到的结果是, 如果把null强转给对象,是不会抛异常的,本身对象是可以为null的. 但是如果是基本类型,比如 int i = (Integer ...
- Call to undefined method app\models\User::find() yii2-admin
这个问题可能大家遇到的不多. 分析原因 问题出在 config/web.php 这个配置文件里面 'components' => [ ..... 'user' => [ 'identity ...
- text_to_be_present_in_element
text_to_be_present_in_element(locator,text)是指定页面元素的文本位置, 一般用于验证一个文本信息或者错误的信息,我们任然以百度登录为案例, 用户名和密码为空, ...
- 利用yum创建本地仓库与网络源
一.创建本地yum仓库 1.cd /etc/yum.repos.d/ 2.创建配置文件:[root@li yum.repos.d]# vim local.repo 3.写入配置信息并保存 [li]na ...
- 动态SQL之模糊查询
模糊查询学习了三种: DAO层 // 可以使用 List<User> wherelike01(String user_name); // 忘记 List<User> where ...