算法介绍:

看到lca问题(不知道lca是什么自(bang)行(ni)百度),不难想到暴力的方法;

先把两点处理到同一深度,再让两点一个一个祖先往上找,直到找到一个相同的祖先;

这么暴力的话,时间复杂度基本上是$ o(n) $;

而观察一下暴力的过程,就会发现,其实一个一个祖先往上找效率非常的低,有没有能优化这一过程的方法呢?这时,强大的倍增就出现了,能够把暴力优化到$ o(log(n)) $;

倍增,简单说就是把一步一步跳替换成每次跳$ 2^i $个祖先;

做法:

先预处理出每个点的深度(dfs或bfs),以及跳$ 2^i $个祖先后所在的位置(fa[i][j]表示第i个点跳$ 2^j $个祖先后的位置,再递推);

然后同理暴力,先把两点跳到同一深度(也用倍增),每次跳$ 2^i $个祖先,判断是否相等,如果相等就不跳(原因见易错点),否则跳;

难点:

1、递推时方程为fa[i][j]=fa[fa[i][j-1]][j-1],因为i跳$ 2^j $个祖先后所在的位置等于i连跳两次$ 2^{j-1} $个祖先后所在的位置;

2、递推时,j先扫1到20,i再扫1到n,因为每次更新f[i][j]要用到另外的位置跳$ 2^{j-1} $个祖先后所在的位置;

3、两个点跳的时候,如果相等,是不能直接输出的,有可能跳过头,就不是最近的公共祖先了;

4、每次读进来的边要存两次(树是无向图),同理,邻接表的数组也要开两倍长;

相关题目

1、洛谷p3379

模板题,放上丑陋的代码

 #include<cstdio>
using namespace std;
const int MAXN=;//两倍长
int tot,n,m,s,first[MAXN],last[MAXN],next[MAXN],to[MAXN],depth[MAXN],fa[MAXN][];
//depth是每个点的深度,fa[i][j]表示第i个点跳2^j个祖先后的位置
bool visited[MAXN];
inline int read()//快读
{
int s=,w=;
char ch=getchar();
while(ch<=''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='') s=s*+ch-'',ch=getchar();
return s*w;
}
void swap(int &x,int &y)
{
int k=x;
x=y;
y=k;
}
void add(int x,int y)//古董邻接表
{
++tot;
if(first[x]==) first[x]=tot; else next[last[x]]=tot;
last[x]=tot;
to[tot]=y;
}
void dfs(int now,int dep,int fat)//深搜求深度
{
if(visited[now]) return;
visited[now]=true;
depth[now]=dep;
fa[now][]=fat;//要记得fa[i][0]存i的父亲(跳一(2^0)个祖先)
for(int i=first[now];i;i=next[i])
{
dfs(to[i],dep+,now);
}
}
int lca(int x,int y)
{
if(depth[x]<depth[y]) swap(x,y);
for(int i=;i>=;--i)
if(fa[x][i]!=&&depth[fa[x][i]]>=depth[y])
{
x=fa[x][i];
}
if(x==y) return x;
for(int i=;i>=;--i)
if(fa[x][i]!=&&fa[y][i]!=&&fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
return fa[x][];
}
int main()
{
n=read();
m=read();
s=read();
for(int i=;i<=n-;++i)
{
int x,y;
x=read();
y=read();
add(x,y);
add(y,x);
}
dfs(s,,);
for(int j=;j<=;++j)
for(int i=;i<=n;++i)
fa[i][j]=fa[fa[i][j-]][j-];
for(int i=;i<=m;++i)
{
int x;
int y;
x=read();
y=read();
printf("%d\n",lca(x,y));
}
return ;
}

倍增求LCA算法详解的更多相关文章

  1. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

  2. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  3. HDU6031 Innumerable Ancestors 倍增 - 题意详细概括 - 算法详解

    去博客园看该题解 题目 查看原题 - HDU6031 Innumerable Ancestors 题目描述 有一棵有n个节点的有根树,根节点为1,其深度为1,现在有m个询问,每次询问给出两个集合A和B ...

  4. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  5. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  6. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  7. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  8. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  9. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

随机推荐

  1. idea中配置tomcat详细

    1:首先要添加一个tomcat流程 2:配置tomcat: 3:配置tomcat中的deployment(就是配置你需要部署的工程) 4:配置tomcat中需要输出的日志logs 5:启动 tomca ...

  2. 手动设计神经网络进行MNIST分类

    前言: 用手工设计的两层神经网络,经过200个epoch,最后得到0.9599,约0.96的精度 正文 import tensorflow as tf from tensorflow.examples ...

  3. kafka学习(四)

    集群成员关系 kafka使用Zookeeper 来维护集群成员的信息.每个broker都有一个唯一标识符,这个标识符可以在配置里指定,也可以自动生成.在broker启动的时候,它通过创建临时节点把自己 ...

  4. Python内置函数compile

    英文文档: compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1) Compile the source i ...

  5. iview报错[Vue warn]: Error in render: "TypeError: ctx.injections.tableRoot.$scopedSlots[ctx.props.column.slot] is not a function"

    原因是我使用了iview的<Table>组件,我给Table组件的columns中定义了4个含有slot的列,但是实际在<Table>中只使用了其中3个,导致的报错. 也就是说 ...

  6. virtualenvwrapper安装和使用

    virtualenvwrapper安装和使用步骤: 1.安装: *nix上安装的命令: pip install virtualenvwrapper windows上安装的命令: pip install ...

  7. python中输入某年某月某日,判断这一天是这一年的第几天?

    输入某年某月某日,判断这一天是这一年的第几天?程序分析 特殊情况,闰年时需考虑二月多加一天: 直接上代码 #定义一个函数,判断是否为闰年 def leapyear(y): return (y % 40 ...

  8. Windows 环境下安装redis 及其PHP Redis扩展

    1.安装Redis (1)这里选择在github官网上下载Redis,地址:Redis下载地址 下载压缩包(如下图),并解压到本地目录,我放在D:\redis (2)验证Redis安装是否成功打开命令 ...

  9. SpringBoot 单元测试忽略@component注解

    springboot框架在单元测试时可能需要忽略某些带有@component的实例 例如以下代码: @Component public class MyCommandLineRunner implem ...

  10. VMware虚拟机NAT模式无法上外网

    VMware虚拟机NAT模式无法上外网排错思路 1,确保三种模式只有一种在连接 2,确保ip配置正确 配置的子网跟DHCP必须是同一网段 3,确保网关配置正确 网关不管怎么配,一定不要配192.168 ...