Source:

PAT A1069 The Black Hole of Numbers (20 分)

Description:

For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the black hole of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we'll get:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (.

Output Specification:

If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:

6767

Sample Output 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

Sample Input 2:

2222

Sample Output 2:

2222 - 2222 = 0000

Keys:

  • 字符串处理

Attention:

  • 早期的PAT考试更注重算法的效率(过于依赖容器会超时),而现在的PAT考试更注重解决问题的能力(强调容器的使用)
  • to_string()会超时

Code:

 #include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std; int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n1,n2,n;
vector<int> p();
scanf("%d",&n);
do
{
for(int i=; i<; i++)
{
p[i]=n%;
n/=;
}
sort(p.begin(),p.end(),less<char>());
n1 = p[]*+p[]*+p[]*+p[];
sort(p.begin(),p.end(),greater<char>());
n2 = p[]*+p[]*+p[]*+p[];
n = n2-n1;
printf("%04d - %04d = %04d\n", n2,n1,n);
}while(n!= && n!=); return ;
}

PAT_A1069#The Black Hole of Numbers的更多相关文章

  1. PAT 1069 The Black Hole of Numbers

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  2. PAT 1069 The Black Hole of Numbers[简单]

    1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...

  3. pat1069. The Black Hole of Numbers (20)

    1069. The Black Hole of Numbers (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, ...

  4. 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise

    题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...

  5. pat 1069 The Black Hole of Numbers(20 分)

    1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...

  6. PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  7. 1069 The Black Hole of Numbers (20分)

    1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...

  8. 1069. The Black Hole of Numbers (20)

    For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...

  9. The Black Hole of Numbers (strtoint+inttostr+sort)

    For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...

随机推荐

  1. Join的7中情况

    一.左外连接 SELECT * FROM A LEFT JOIN B ON A.KEY = B.KEY 二.右外连接 SELECT * FROM A RIGHT JOIN B ON A.KEY = B ...

  2. 【洛谷p2089】 烤鸡

    烤鸡[题目链接] 感觉我超废 关于算法:有很多很多算法吧,但自我感觉最重要的是递归的算法: SOLUTION: 首先忍不住要吐槽这个神仙数据: 嗯???定睛一看,它这数据范围莫不是白瞎了,因为每种配料 ...

  3. Codeforces - 1191B - Tokitsukaze and Mahjong - 模拟

    https://codeforces.com/contest/1191/problem/B 小心坎张听的情况. #include<bits/stdc++.h> using namespac ...

  4. go中字符串类型string的用法

    示例 // 字符串类型string的用法 package main import ( "fmt" "unsafe" ) func main() { // 字符串 ...

  5. linux处理器子系统调优

  6. linux性能分析工具Vmstat

  7. 微信小程序(2)--下拉刷新和上拉加载更多

    下拉刷新 1.首先在.json文件中配置(如果在app.json文件中配置,那么整个程序都可以下拉刷新.如果写在具体页面的.json文件中,那么就是对应的页面下拉刷新.) 具体页面的.json文件: ...

  8. centos GIT安装

    [注](yum 源仓库里的 Git 版本更新不及时,最新版本的 Git 是 1.8.3.1,但是官方最新版本已经到了 2.9.2.想要安装最新版本的的 Git,只能下载源码进行安装.) 安装git服务 ...

  9. 一、表单和ajax中的post请求&&后台获取数据方法

    一.表单和ajax中的post请求&&后台获取数据方法 最近要做后台数据接收,因为前台传来的数据太过于混乱,所以总结了一下前台数据post请求方法,顺便写了下相对应的后台接收方法. 前 ...

  10. zabbix入门之添加主机

    添加主机的方法有两种:手动添加.自动发现 前提是:在被监控主机中安装zabbix-agent.zabbix-sender组件,并配置好启动服务. 手动添加: 自动发现: 这里等待1分钟左右即可发现主机 ...