题意:给你一颗以点1为根的数,有两种操作,一种是把x及其子树的所有点都灌满水,一种是把x及其所有祖先都放空水,一种是询问,问某个点里有没有水?

思路:看网上大多数是树剖,但实际上5e5的数据树剖还是有点慌的。。。我只用了线段树。我们发现,只要一个点被清空之后,如果没有灌水,那么这个点将一直是空的。同理,如果这个点被灌满水后一直不是空的,那么它将一直是满的,所以,这个点的状态实际取决于离查询时间最近的是放水还是灌水。我们可以用线段树来维护这个,我们首先来维护灌水时间,这个在dfs序后用线段树的区间操作,很好完成。那么放水呢?我们换个思维,清空这个点及其祖先,反过来说,如果这个点被清空了,那么一定是它的子树中的某个点被清空了,所以我们可以用线段树查询它被清空的最晚时间,与之前的操作比较,如果清空操作较晚,那么这个点就是空的,否则就是满的。

代码:

#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define db double
#define pii pair<int, int>
#define ls (x << 1)
#define rs ((x << 1) | 1)
using namespace std;
const int maxn = 500010;
int a[maxn];
int dfn[maxn], tot, sz[maxn];
vector<int> G[maxn];
struct node {
int add, del;
int lz;
};
node tr[maxn * 4];
void add(int x, int y) {
G[x].push_back(y);
G[y].push_back(x);
}
void pushup(int x) {
tr[x].del = max(tr[ls].del, tr[rs].del);
}
void maintain(int x, int y) {
tr[x].add = y;
tr[x].lz = y;
}
void pushdown(int x) {
if(tr[x].lz != -1) {
maintain(ls, tr[x].lz);
maintain(rs, tr[x].lz);
tr[x].lz = -1;
}
}
void build(int x, int l, int r) {
if(l == r) {
tr[x].lz = -1;
return;
}
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(x);
}
void add1(int x, int l, int r, int ql ,int qr, int val) {
if(l >= ql && r <= qr) {
maintain(x, val);
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(ql <= mid) add1(ls, l, mid, ql, qr, val);
if(qr > mid) add1(rs, mid + 1, r, ql, qr, val);
pushup(x);
}
void add2(int x, int l, int r, int pos, int val) {
if(l == r) {
tr[x].del = val;
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(pos <= mid) add2(ls, l, mid, pos, val);
else add2(rs, mid + 1, r, pos, val);
pushup(x);
}
int query1(int x, int l, int r, int pos) {
if(l == r) return tr[x].add;
pushdown(x);
int mid = (l + r) >> 1;
if(pos <= mid) return query1(ls, l, mid, pos);
else return query1(rs, mid + 1, r, pos);
}
int query2(int x, int l, int r, int ql, int qr) {
if(l >= ql && r <= qr) return tr[x].del;
pushdown(x);
int mid = (l + r) >> 1;
int ans = 0;
if(ql <= mid) ans = max(ans, query2(ls, l, mid, ql, qr));
if(qr > mid) ans = max(ans, query2(rs, mid + 1, r, ql, qr));
return ans;
}
void dfs(int x, int fa) {
dfn[x] = ++tot;
sz[x] = 1;
for (auto y : G[x]) {
if(y == fa) continue;
dfs(y, x);
sz[x] += sz[y];
}
}
int main() {
int n, m, x, y;
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d", &x, &y);
add(x, y);
}
dfs(1, -1);
build(1, 1, n);
scanf("%d", &m);
for(int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
if(x == 1) {
add1(1, 1, n, dfn[y], dfn[y] + sz[y] - 1, i);
} else if(x == 2) {
add2(1, 1, n, dfn[y], i);
} else {
int tmp1 = query1(1, 1, n, dfn[y]), tmp2 = query2(1, 1, n, dfn[y], dfn[y] + sz[y] - 1);
if(tmp1 <= tmp2) printf("0\n");
else printf("1\n");
}
}
}

  

Codeforces 343D 线段树的更多相关文章

  1. CodeForces 343D 线段树维护dfs序

    给定一棵树,初始时树为空 操作1,往某个结点注水,那么该结点的子树都注满了水 操作2,将某个结点的水放空,那么该结点的父亲的水也就放空了 操作3,询问某个点是否有水 我们将树进行dfs, 生成in[u ...

  2. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  3. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  4. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  5. codeforces 1136E 线段树

    codeforces 1136E: 题意:给你一个长度为n的序列a和长度为n-1的序列k,序列a在任何时候都满足如下性质,a[i+1]>=ai+ki,如果更新后a[i+1]<ai+ki了, ...

  6. Z - New Year Tree CodeForces - 620E 线段树 区间种类 bitset

    Z - New Year Tree CodeForces - 620E 这个题目还没有写,先想想思路,我觉得这个题目应该可以用bitset, 首先这个肯定是用dfs序把这个树转化成线段树,也就是二叉树 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

  9. Linear Kingdom Races CodeForces - 115E (线段树优化dp)

    大意: n条赛道, 初始全坏, 修复第$i$条花费$a_i$, m场比赛, 第$i$场比赛需要占用$[l_i,r_i]$的所有赛道, 收益为$w_i$, 求一个比赛方案使得收益最大. 设$dp[i]$ ...

随机推荐

  1. win10下RabbitMQ的安装和配置

    在win10环境下安装RabbitMQ的步骤 第一步:下载并安装erlang 原因:RabbitMQ服务端代码是使用并发式语言Erlang编写的,安装Rabbit MQ的前提是安装Erlang. 下载 ...

  2. 作业(二)—python实现wc命令

    Gitee地址:https://gitee.com/c1e4r/word-count(为什么老师不让我们用github) 0x00 前言 好久没发博客了,感觉自己的学习是有点偷懒了.这篇博客也是应专业 ...

  3. flask开发问题小记

    前因 最近在使用flask开发一个APP的后端时出现了一些小问题.我使用sqlalchemy建立了如下多对多关系: 中间表 user_manager_group = db.Table('manage_ ...

  4. Linux下的上传和下载yum install -y lrzsz

    先使用命令 yum install -y lrzsz rz 上传    或者直接拖动 sz 要下的文件 回车

  5. 【week8 in ricoh】 Learning CNN

    week8:5.27 1.做CNN practical[1]里的example1,了解CNN模块中的每一个部分 (1)卷积层的卷积过程,输入输出维度变化(2)ReLU(3)Pooling层(4)Nor ...

  6. mysql inner join用法

    inner join(等值连接):只返回两个表中联结字段相等的行. left join(左联接):返回包括左表中的所有记录和右表中联结字段相等的记录. right join(右联接):返回包括右表中的 ...

  7. Android中软键盘弹出时关于布局的问题

     当在Android的layout设计里面如果输入框过多,则在输入弹出软键盘的时候,下面的输入框会有一部分被软件盘挡住,从而不能获取焦点输入. 解决办法: 方法一:在你的activity中的oncre ...

  8. paper 136:ARM ADS集成开发环境的使用(新版)

    [转载]:http://blog.csdn.net/yhmhappy2006/article/details/1673203 ARM ADS集成开发环境的使用 在这里,将介绍ARM开发软件ADS(AR ...

  9. ubuntu+VS code+launch.json+task.json

    1.ubuntu->vs code . 通过官方PPA安装Ubuntu make sudo add-apt-repository ppa:ubuntu-desktop/ubuntu-make s ...

  10. 8. Jmeter导入jar包

    我们都知道Jmeter是Java编写的,所以有很多时候需要用到Java方面的知识.比如Jmeter前置处理器,就用到了很多Java知识.那么本章我们先介绍如何使用Jmeter导人jar包. 工具准备 ...