Quantitative Strategies for Achieving Alpha(一)
1. 怎么构建测试
所有的测试五等分,表明我们的回测的universe被分为五个组,根据我们要测试的公司因子的值。
Quintiles provide a clear answer to that question: if a strategy works, the top quintile should outperform, the bottom quintile should underperform, and there should be some linearity of returns among the qunintiles in between.
2. The backtest summary
(1) The years over which the test returns were calculated.
(2) Compound annual growth rates by quintile, based on the annually run portfolio returns.
(3) Average excess returns versus our Backtest Universe
(4) The percentage of one-year periods that the strategy outperforms the Universe.
(5) The percentage of rolling three-year periods that the stragety outperforms the Universe.
(6) The maximum gain realized over any one-year period
(7) The maximum loss sustained over any one-year period
(8) Sharpe ration of qunitile returns.
(9) The standard deviation of quintile returns.
(10) Beta of quintile returns versus the Backtest Universe. This represents a measure of how volatile a strategy is relative to the overall Universe. A number greater than 1 indicates a strategy that is more volatile than the Universe, while a number less than 1 indicates a strategy that is less volatile.
(11) Alpha of quintile returns versus Backtest Universe.
(12) Average portfolio size.
(13) Average number of companies outperforming.
(14) Average number of companies underperforming.
(15) The median portfolio value of the first factor used in this strategy.
(16) The median portfolio value of the second factor used in the strategy.
(17) The average market capitalization of the portfolios by quintile over the testing period.
3. Benchmarks
A quantitative strategy that works should have all or most of the following characteristics.
(1) Significant outperformance for the top quintile. For single-factor strategies, which have large average portfolio sizes, I like to see at least a 2% average excess return for the top quintile versus the Universe. For more focused, two-factor strategies, excess returns of 4% or more are preferable.
(2) Significant underperformance of the bottom qunitile.
(3) Good linearity of excess returns among the quintiles.
(4) Strong consistency of returns over time.
(5) Low volatility and low maximum loss for the top quintile/high volatility and high maximum loss for the bottom quintile. Both the Sharpe ration and Alpha can be used to provide an idea of a stragety's risk-adjusted returns, where risk is represented by volatility.
Quantitative Strategies for Achieving Alpha(一)的更多相关文章
- Quantitative Strategies for Achieving Alpha (三)
chapter 4: Profitability Profitability measures we tested include return on invested capital, return ...
- Quantitative Startegies for Achieving Alpha(二)
Chapter 3 The Day-To-Day Drivers Of Stock Market Returns Summary: (1) Earning growth is the primary ...
- Should You Build Your Own Backtester?
By Michael Halls-Moore on August 2nd, 2016 This post relates to a talk I gave in April at QuantCon 2 ...
- Fast R-CNN论文阅读摘要
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Co ...
- (zhuan) Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning this blog from: https://blo ...
- 一些公司对quantitative的要求
来自日月光华BBS: Company: UBS AG Job Title: Quantitative Developers / Analysts (Entry Level, Multiple Posi ...
- BitCoin Trading Strategies BackTest With PyAlgoTrade
Written by Khang Nguyen Vo, khangvo88@gmail.com, for the RobustTechHouse blog. Khang is a graduate f ...
- 图像抠图算法学习 - Shared Sampling for Real-Time Alpha Matting
一.序言 陆陆续续的如果累计起来,我估计至少有二十来位左右的朋友加我QQ,向我咨询有关抠图方面的算法,可惜的是,我对这方面之前一直是没有研究过的.除了利用和Photoshop中的魔棒一样的技术或者 ...
- 第六次团队作业——Alpha冲刺之事后诸葛亮
Deadline:2016-11-24 22:00pm Alpha冲刺,很多同学经历了"Learning by doing"的学一门新的编程语言.学Git.学做一个完整的项目.但是 ...
随机推荐
- Delphi 判断按键状态
Delphi 判断按键状态 http://blog.sina.com.cn/s/blog_54da9cc001015di1.html (2012-04-05 14:22:50) 标签: 杂谈 分类: ...
- 中国MOOC_零基础学Java语言_第7周 函数_1分解质因数
第7周编程题 查看帮助 返回 第7周编程题 依照学术诚信条款,我保证此作业是本人独立完成的. 温馨提示: 1.本次作业属于Online Judge题目,提交后由系统即时判分. 2.学生可以在作业截 ...
- Mysql数据库存储数据时间与系统获取时间不一致
最近进行项目开发,发现存在数据库内的数据和系统查询到的数据相差8小时 发现有2种比较合适的方法 (一)修改mysql服务的区时 centos进入mysql查看/修改时区 1.输入以下命令进入mysql ...
- Pytorch搭建卷积神经网络用于MNIST分类
import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvisi ...
- [Git] 019 merge 命令的补充
回顾:[Git] 017 加一条分支,享双倍快乐 的 "2.3" 1. "Fast-forward" "Git" 在合并分支时会尽可能地使用 ...
- Spark-Core RDD行动算子
1.reduce(func) 通过func函数聚集RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据. scala> val rdd1 = sc.parallelize(1 to 100) ...
- C++中的const分析
1,C 语言中的 const: 1,const 修饰的变量是只读的,本质还是变量: 1,C 语言中的 const 使变量具有只读属性: 2,const 只在编译期有用,在运行期无用: 3,const ...
- HDU4471 Homework
题目 预处理转移矩阵的\(2^k\). 然后把关键点按下标排序. 每次用类似于矩阵快速幂的方法求出两个关键点中间的转移矩阵. #include<bits/stdc++.h> using n ...
- python字符串 常用函数 格式化字符串 字符串替换 制表符 换行符 删除空白 国际货币格式
# 字符串常用函数# 转大写print('bmw'.upper()) # BMW# 转小写print('BMW'.lower()) # bmw# 首字母大写print('how aae you ?'. ...
- [LeetCode] 109. 有序链表转换二叉搜索树
题目链接 : https://leetcode-cn.com/problems/convert-sorted-list-to-binary-search-tree/ 题目描述: 给定一个单链表,其中的 ...