题目描述

给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

给定 n 和 k,返回第 k 个排列。

说明:

  • 给定 n 的范围是 [1, 9]。
  • 给定 的范围是[1,  n!]。

示例 1:

输入: n = 3, k = 3
输出: "213"

示例 2:

输入: n = 4, k = 9
输出: "2314"

解题思路

类似于找下一个排列的做法,不过如果从头开始一直到第k个就太费时了,所以考虑从头开始针对每个位置找到第k个排列的确定数字,例如对于示例2中的n = 4, k = 9,第一个数一定为2,因为以1开头的排列总数为3!=6,9>6且9-6<6,所以第9个排列的首数字为1后一个数字2,即找到第7个排列为2134,同样对于第二个位置找到首数字为3,此时即找到了第9个排列为2314。注意每次找到首位置数字后,要将其后的数字从小到大重新排序才是下一个排列。

代码

 class Solution {
public:
string getPermutation(int n, int k) {
string s = "";
for(int i = ; i <= n; i++)
s += to_string(i);
int idx = ;
while(k > ){
int sum = fac(n - idx - ), i = ;
while(k > sum){
k -= sum;
i++;
}
swap(s[idx], s[idx + i]);
sort(s.begin() + ++idx, s.end());
}
return s;
}
int fac(int n){
int res = ;
while(n > )
res *= n--;
return res;
}
};

LeetCode 60. 第k个排列(Permutation Sequence)的更多相关文章

  1. Java实现 LeetCode 60 第k个排列

    60. 第k个排列 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &q ...

  2. [Swift]LeetCode60. 第k个排列 | Permutation Sequence

    The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...

  3. LeetCode 60 第K个排列

    题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "13 ...

  4. LeetCode:第K个排列【60】

    LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...

  5. LeetCode 中级 - 第k个排列(60)

    可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...

  6. 60第K个排列

    题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:    "123"    &quo ...

  7. 力扣60——第k个排列

    原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...

  8. 算法:60.第k个排列

    解答参考:https://blog.csdn.net/lqcsp/article/details/23322951 题目链接:https://leetcode-cn.com/problems/perm ...

  9. 代码题(45)— 下一个排列、第k个排列

    1.31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只 ...

随机推荐

  1. 第二章 单表查询 T-SQL语言基础(1)

    单表查询(1) 本章:逻辑查询处理,特定的SELECT查询生成正确的结果集而要经历的一系列逻辑阶段;单表查询的其他方面,包括:运算符,空值(NULL),字符的处理和临时数据,分级(ranking),C ...

  2. python 一键登录微信分析好友性别 地址 生成结果

    # -*- coding:utf- -*- """ author:Mr Yang data:// """ import itchat imp ...

  3. Nginx之常用操作

    1) 将XXX.com 重定向到 www.XXX.com server { client_max_body_size 20m; listen ; server_name www.xxx.com xxx ...

  4. leetcode240 搜索二维矩阵 II

    题目: 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有矩阵 ma ...

  5. LINUX修改path环境变量

    PATH用作运行某个命令的时候,本地查找不到某个命令或文件,会到这个声明的目录中去查找. 例如一般设定java的时候为了在任何目录下都可以运行bin文件夹下的命令.就将java的bin目录声明到pat ...

  6. WooyunWifi路由器

    WooyunWifi 初始化配置 为了开始使用您的WooyunWifi路由器,您需要对WooyunWifi进行初始化配置,这些配置主要位于Openwrt Luci管理界面中,如果您对Openwrt路由 ...

  7. Linux SWAP交换分区维护

    1.查看当前swap分区信息

  8. 个人作业4-ALpha项目测试

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/ 这个作业要求在哪里 https://edu.cnbl ...

  9. 咕qwq

    ccsp回来之后一直肚子难受,到现在还没好. 下午去人民医院急诊做了个CT,医生说是有问题的,但她看不出来,让我明天早起挂专家号去QAQ. UPD:初步诊断是胀气.医生让我先吃两天抗生素...

  10. 【bzoj 4046 加强版】Pork barrel

    刚考完以为是神仙题--后来发现好像挺蠢的-- QwQ 题意 给你一张 \(n\) 个点 \(m\) 条边的无向图(不一定连通),有 \(q\) 组询问,每组询问给你 \(2\) 个正整数 \(l,h\ ...