Python:用pyinstrument做性能分析
导引
在计算密集型计算或一些Web应用中,我们常常需要对代码做性能分析。在Python中,最原始的方法即是使用time包中的time函数(该函数以秒为计时单位):
from time import sleep, time
def func1():
sleep(0.001)
def func2():
sleep(2)
begin1 = time()
func1()
end1 = time()
begin2 = time()
func2()
end2 = time()
print("func1 consume: %f, func2 consume:%f, func3 consume: %f"\
% (end1-begin1, end2-begin2, end2-begin1))
控制台输出如下:
func1 consume: 0.001271, func2 consume:2.000421, func3 consume: 2.001692
pyinstrument基本用法
但是一旦函数多了起来,这种方式显然过于繁杂。类似C语言中的cProfile,在Python中,也有专门的性能分析工具pyinstrument(该库非内置,需要使用conda/pip安装),我们在复杂的项目中可以使用它来代替简陋的time.time()。
首先来看一下基本的使用,它的使用框架如下:
from pyinstrument import Profiler
from time import sleep
def func1():
sleep(0.1)
def func2():
sleep(2)
profiler = Profiler()
profiler.start()
# 这里是你要分析的代码,我们这里分析func1和func2两个函数
func1()
func2()
profiler.stop()
profiler.print()
可以看到,该工具也将其成功分析出了个函数的运行时间,并为我们标红指出了运行2s的func2函数是性能瓶颈:

如果我们进一步调低函数的运行时间:
def func3():
sleep(0.0001)
profiler = Profiler()
profiler.start()
func3()
profiler.stop()
profiler.print()
此时会显示“No samples were recorded”,如下:

这是因为你的代码运行时间小于了1ms,如果你仍然想分析这段代码,你可以选择将间隔值调到比默认的0.001(1ms)小,比如这样:
profiler = Profiler(interval=0.0001)
此时你会发现,func3也能被检测出来了:

此外,如果你要在浏览器中查看分析结果,可以使用profiler.open_in_browser()代替profiler.print()的控制台打印输出:

也可以使用profiler.output_html()将profile以html形式输出。
分析Flask中的web响应性能
我们也可以对Flask应用进行性能分析,具体的用法如下:
from flask import Flask, g, make_response, request
app = Flask(__name__)
@app.before_request
def before_request():
if "profile" in request.args:
g.profiler = Profiler()
g.profiler.start()
@app.after_request
def after_request(response):
if not hasattr(g, "profiler"):
return response
g.profiler.stop()
output_html = g.profiler.output_html()
return make_response(output_html)
这样程序会检测每个request中的?profile参数,如果检测到则会开始分析。在运行了profiler的request结束后,它会生成一个html输出替代掉真实的response并返回。
参考
- [1] https://docs.python.org/3/library/time.html?highlight=time#time.time
- [2] https://pyinstrument.readthedocs.io/en/latest/guide.html
Python:用pyinstrument做性能分析的更多相关文章
- chrome使用Timeline做性能分析
使用Timeline做性能分析 Timeline面板记录和分析了web应用运行时的所有活动情况,这是研究和查找性能问题的最佳途径.###Timeline面板概览 Timeline面板主要有三个部分构成 ...
- Python 优化第一步: 性能分析实践 使用cporfile+gprof2dot可视化
拿来主义: python -m cProfile -o profile.pstats to_profile.py gprof2dot -f pstats profile.pstats |dot -Tp ...
- python面试总结3(性能分析优化,GIl常考题)
python性能分析和优化,GIL常考题 什么是Cpython GIL Cpython解释器的内存管理并不是线程安全的 保护多线程情况下对python对象访问 Cpython使用简单的锁机制避免多个线 ...
- python 数据较大 性能分析
前提:若有一个几百M的文件需要解析,某个函数需要运行很多次(几千次),需要考虑性能问题 性能分析模块:cProfile 使用方法:cProfile.run("func()"),其中 ...
- golang 使用pprof和go-torch做性能分析
软件开发过程中,项目上线并不是终点.上线后,还要对程序的取样分析运行情况,并重构现有的功能,让程序执行更高效更稳写. golang的工具包内自带pprof功能,使找出程序中占内存和CPU较多的部分功能 ...
- 使用xdebug对php做性能分析调优
作为PHP程序员我们或多或少都了解或使用过xdebug.此文章记录安装和配置xdebug,以及如何使用它来分析php程序. 我的机器环境: mac, php 安装 xdebug 推荐使用 pecl 安 ...
- python pstats ,profile 性能分析
#! /usr/bin/env python # encoding=utf8 import pstats import profile def func1(): for i in range(1000 ...
- 使用JProfiler做性能分析过程
供自己记录一下,也分享给大家使用JProfiler的过程(感谢教我使用这个工具的大佬),整个博客比较粗糙,希望对大家有帮助 1.首先安装好JProfiler,打开eclipse,右键你所要分析的项目, ...
- 用cProfile做性能分析【转】
原文地址: https://www.cnblogs.com/kaituorensheng/p/4453953.html
随机推荐
- ReactiveCocoa 学习资料
之前就有听说,感觉很强大,ReactiveCocoa更加被Mattt Thompson大神称为开启一个新Objective-C纪元.所以觉得非常有学习的必要了. 一些很好的学习资料: Reactive ...
- 节点流和处理流(BufferedReader和BufferedWriter,BufferedInputStream和BufferedOutputStream,ObjectlnputStream和objectOutputStream)
一.基本介绍: 1.节点流可以从一个特定的数据源读写数据,如FileReader. FileWriter 如图:字节流是直接对数据源(文件,数组之类存放数据的地方)进行操作 2.处理流(也叫包装流)是 ...
- Spark入门案例 - 统计单词个数 / wordcount
Scala版 import org.apache.spark.{SparkConf, SparkContext} object WordCountScala { def main(args: Arra ...
- 生成一个node项目
生成一个node项目1.创建文件夹2.文件夹中右键->在此处打开命令窗口->文件夹中打开dos3.执行:npm init //一路回车,最后y4.安装插件: C:\www\nodejs\h ...
- CentOS8上安装MySQL
没有选择Win10上安装MySQL,个人感觉比较傻瓜式.同时相对Win10操作系统,个人更熟悉Unix/Linux操作系统,所以选择在CentOS8上安装MySQL数据库. 还是熟悉的yum安装,前提 ...
- S32Kxxx bootloader之CAN bootloader
了解更多关于bootloader 的C语言实现,请加我Q扣: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 最近完成了S32Kxx ...
- RENIX使用模板创建报文——网络测试仪实操
一.简介 RENIX内置多种报文模板,可以直接用来创建一个报文,节省时间 二.操作步骤 1.准备工作:连接机框,占用端口 2.新建或者编辑流 3.切换到 数据包/编辑 界面:点击创建新协议报文 4.在 ...
- BI报表系统该如何集成到其他系统呢?
近期小麦我经常收到很多用户的反馈,想知道Smartbi的报表能不能从微信/钉钉之类的直接跳转到已做好的报表页面?他们都希望通过这种方式尽可能地避免由于各个管理软件账号密码不同而造成的不便,能够在日常工 ...
- vue--前端路由及vue-router两种模式
前言 路由这个概念最早在后端出现,随后前后端分离,直至当今的单页面应用,路由也在一直发生变化.本文来总结一下路由变化和vue-router中的路由模式区别相关知识点. 正文 1.什么是前端路由 (1) ...
- Python 小数据池和代码块缓存机制
前言 本文除"总结"外,其余均为认识过程:3.7.5: 总结: 如果在同一代码块下,则采用同一代码块下的缓存机制: 如果是不同代码块,则采用小数据池的驻留机制: 需要注意的是,交互 ...