Otto Group Product Classification
遇到的坑:
- 做多分类,用CrossEntropyLoss时,训练时候的正确标签的范围应该是[0,n-1],而不是[1,n],不然会报
IndexError: Target is out of bounds
比如这题就应该预处理为[0,8],而不是[1,9] - pd.read_csv以后得到data,然后np.array(data)里面就已经不包括原本csv文件里第一行的名称了
- 关于read_csv用相对路径读不到,用绝对路径就读的到的问题,应该是vscode workspace的问题,在vscode里打开文件即可
疑问:
读进来的数据数据都要变成np.float32形式?
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import pandas as pd
batch_size=64
#归一化 均值和方差?
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,))])
def process_label(labels):
ret=[]
for label in labels:
ret.append(int(label[-1])-1)
ret=torch.tensor(ret)
return ret
class otto(Dataset):
def __init__(self,filepath):
data=pd.read_csv(filepath)
#print(data)
labels=data['target']
self.len=data.shape[0]
self.x_data=torch.tensor(np.array(data)[:,1:-1].astype(np.float32))
self.y_data=process_label(labels)
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.len
# train_dataset=datasets.MNIST(root='./dataset/mnist/',train=True,download=True,transform=transform)
# train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
# test_dataset=datasets.MNIST(root='./dataset/mnist/',train=False,download=True,transform=transform)
# test_loader=DataLoader(test_dataset,shuffle=False,batch_size=batch_size)
dataset=otto('/Users/zzy81/Desktop/py/62/9/train.csv')
train_loader=DataLoader(dataset=dataset,batch_size=64,shuffle=True,num_workers=0)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.l1=torch.nn.Linear(93,70)
self.l2=torch.nn.Linear(70,60)
self.l3=torch.nn.Linear(60,40)
self.l4=torch.nn.Linear(40,20)
self.l5=torch.nn.Linear(20,9)
def forward(self,x):
# x=x.view(-1,93)
x=F.relu(self.l1(x))
x=F.relu(self.l2(x))
x=F.relu(self.l3(x))
x=F.relu(self.l4(x))
return self.l5(x)
def solve(self,x):
with torch.no_grad():
x=F.relu(self.l1(x))
x=F.relu(self.l2(x))
x=F.relu(self.l3(x))
x=F.relu(self.l4(x))
x=self.l5(x)
# x=F.relu(self.l5(x)) #need to be changed to softmax
_,tmp=torch.max(x,dim=1)
tmp=pd.get_dummies(tmp)
return tmp
model=Net()
criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader):
inputs,target=data
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,target)
#这里outputs.shape=(64,9), target.shape=(64)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:
print('[%d, %5d] loss:%.3f'%(epoch+1,batch_idx+1,running_loss/300))
running_loss=0.0
# def test():
# correct=0
# total=0
# with torch.no_grad():
# for data in test_loader:
# images,labels=data
# outputs=model(images)
# _,predicted=torch.max(outputs.data,dim=1)
# total+=labels.size(0)
# correct+=(predicted==labels).sum().item()
# print('accuracy on test set : %d %%' % (100*correct/total))
if __name__=='__main__':
for epoch in range(3000):
train(epoch)
test_data=pd.read_csv('./test.csv')
test_input=torch.tensor(np.array(test_data)[:,1:].astype(np.float32))
output=model.solve(test_input)
output.columns=['Class_1','Class_2','Class_3','Class_4','Class_5','Class_6','Class_7','Class_8','Class_9']
output.insert(0,'id',test_data['id'])
tmp=pd.DataFrame(output)
tmp.to_csv('./zzy_predict.csv',index=False)
# test()
Otto Group Product Classification的更多相关文章
- Otto Product Classification Winner's Interview: 2nd place, Alexander Guschin ¯\_(ツ)_/¯
Otto Product Classification Winner's Interview: 2nd place, Alexander Guschin ¯\_(ツ)_/¯ The Otto Grou ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- PyTorch深度学习实践——多分类问题
多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩 ...
- How Much Did It Rain? Winner's Interview: 1st place, Devin Anzelmo
How Much Did It Rain? Winner's Interview: 1st place, Devin Anzelmo An early insight into the importa ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- SAP T CODE : Description (Program)
SAP T CODE : Description (Program) V : Quickstart RKCOWUSL (RKCOWUSL)V+01 : Create Sales Call (SAPMV ...
- Entity Framework 基于方法的查询语法
实体框架(Entity Framework )是 ADO.NET 中的一套支持开发面向数据的软件应用程序的技术. LINQ to Entities 提供语言集成查询 (LINQ) 支持,它允许开发 ...
- LINQ to Entities 查询语法
转自: http://www.cnblogs.com/asingna/archive/2013/01/28/2879595.html 实体框架(Entity Framework )是 ADO.NET ...
- Magento创建configurable产品的要点
接着上一篇用API创建可配置的产品Configurable Product说事.Magento的产品类型可分为Simple Product.Group Product.Configurable Pro ...
- LINQ(隐式表达式、lambda 表达式)
.NET 中一项突破性的创新是 LINQ(Language Integrated Query,语言集成查询),这组语言扩展让你能够不必离开舒适的 C# 语言执行查询. LINQ 定义了用于构建查询表达 ...
随机推荐
- 解决Maven下载依赖慢的问题
参考:https://blog.csdn.net/web15085599741/article/details/126459039 <repositories> <repositor ...
- Reactor 模式线程模型
根据Reactor的数据量和处理资源池线程数量,可以分为3钟典型实现 单Reactor单线程 单Reactor 多线程 主从Reactor 多线程
- Jquery EasyUI dataGrid 修改默认分页大小 不起效果
pageSize 不能单独使用,必须和pageList联合使用. 如果pageSize的值不在pageList中时,会以pageList中最小的值显示,而设置的pageSize无效.
- hierarchical-clustering
https://ww2.mathworks.cn/help/stats/hierarchical-clustering.html https://ww2.mathworks.cn/help/stats ...
- Java 04-基础 数据类型转换 自动类型转换+强制类型转换
1.数据类型自动转换 规则1:如果一个操作数为double型,则整个表达式提示至double型 规则2:满足自动类型转换条件, 两种类型要兼容,数值类型(整数和浮点)相互兼容 目标类型取值大于 ...
- Java-面向对象基础 this& 重载
1.this表示当前对象 获取当前对象的属性 使用this调用当前属性 2.重载 如果两个方法的方法名相同,但参数不一致,那么可以说一个方法是另一个方法的重载
- java 动手动脑 方法重载
如下代码://MethodOverload.java //Using overloaded methods package HJssss; public class zhuce { public st ...
- leetcode 310. 最小高度树 【时间击败70.67%】 【内存击败89.04%】
数组替代队列,从超时到击败70%,用tree[0]替代new一个新的ArrayList,上升10% 思想是遍历一遍,删除度为1的节点,答案只可能为1或2 1 public List<Intege ...
- docker 安装后报错处理
问题场景: Docker服务安装之后启动报错 日志如下: time="2022-03-20T21:51:16.116163560+08:00" level=info msg=&qu ...
- redis in windows
Redis https://github.com/MSOpenTech/redis/releases 启动 redis-server redis.windows.conf 设置服务 redis-ser ...