【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词
一、DWS层与DWM设计
1、思路
之前已经进行分流
但只需要一些指标进行实时计算,将这些指标以主题宽表的形式输出
2、需求
访客、商品、地区、关键词四层的需求(可视化大屏展示、多维分析)


3、DWS层定位
轻度聚合、主题中管理
二、DWS层-访客主题宽表的计算

DWS表主要包含维度表和事实表
维度表主要包括渠道、地区、版本、新老用户等
事实表主要包括PV、UV、跳出次数、进入页面数(session_count)、连续访问时长等
1、需求分析
合并接收到的数据流,按时间窗口聚合,并将聚合结果写入数据库
2、实现
(1)读取kafka各个流的数据
page_log、dwm_uv、dwm_jump_user跳出用户
(2)合并读取到的数据流
使用union合并两个结构相同的数据流
需要提前调整数据结构封装主题宽表实体类(两个待合并的流也都要是这样的结构)
userJumpDStream.map实现转换
合并4条输入的流:
uniqueVisitStatsDstream.union(
 pageViewStatsDstream,
 sessionVisitDstream,
 userJumpStatDstream
);
(3)根据维度进行聚合
设置时间标记及水位线
4个维度作为key,使用tuple4组合,进行分组,.keyBy(new KeySelector
reduce窗口内聚合,并补充时间字段
(4)写入OLAP数据库ClickHouse
专门解决大量数据统计分析的数据库,在保证了海量数据存储的能力,同时又兼顾了响应速度
先建表,使用 ReplacingMergeTree 引擎来保证幂等性
将日期变为数字作为分区类型
编写ClickhouseUtils工具类
创建 TransientSink 注解,标记不需要保存的字段
配置连接地址类,并增加写入OLAP的sink
查看控制台输出及表中数据 visitor_stats_2021
三、商品主题宽表

把多个事实表的明细数据汇总起来组合成宽表
1、需求及思路
获取数据流并转换为统一的数据对象格式
将统一数据结构合并为一个流
设定事件时间与水位线,分组、开窗、聚合
关联维度表补充数据
写入ClickHouse
2、功能实现
建商品统计实体类(各种业务数据的统计),并给必要字段添加@Builder.Default注解,各类添加@Builder注解(构造方法)
kafka中获取指定的流:FlinkKafkaConsumer<String> pageViewSource = MyKafkaUtil.getKafkaSource(pageViewSourceTopic,groupId);
对各种流数据进行结构转换,转换为构建的实体类
创建电商业务常量类 GmallConstant,类似维度表,用一个数字表示一个字符串
将统一的数据结构合并为一个流
设定事件时间与水位线
按商品id分组,10秒的窗口进行开窗window(TumblingEventTimeWindows.of(Time.seconds(10)))
补充商品维度、SKU维度、品类维度、品牌维度等信息
SingleOutputStreamOperator<ProductStats> productStatsWithTmDstream =
AsyncDataStream.unorderedWait(productStatsWithCategory3Dstream,
new DimAsyncFunction<ProductStats>("DIM_BASE_TRADEMARK") {
@Override
public void join(ProductStats productStats, JSONObject jsonObject) throws
Exception {
productStats.setTm_name(jsonObject.getString("TM_NAME"));
}
@Override
public String getKey(ProductStats productStats) {
return String.valueOf(productStats.getTm_id());
}
}, 60, TimeUnit.SECONDS);
productStatsWithTmDstream.print("to save");
ClickHouse中创建商品主题宽表,添加写入ch的sink
//TODO 7.写入到 ClickHouse
productStatsWithTmDstream.addSink(
ClickHouseUtil.<ProductStats>getJdbcSink(
"insert into product_stats_2021 values(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)"));
查看ClickHouse表中的数据
四、地区主题表(Flink SQL)

1、需求分析
定义 Table 流环境,把数据源定义为动态表
通过 SQL 查询出结果表并转换为数据流
将数据流写入目标数据库
2、功能实现
(1)添加FlinkSQL依赖
(2)定义 Table 流环境StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
(3)将数据源topic定义为动态表WITH (" + MyKafkaUtil.getKafkaDDL(orderWideTopic, groupId) + ")");
WATERMARK FOR rowtime AS rowtime 是把某个虚拟字段设定为 EVENT_TIME
(4)拼接 Kafka 相关属性到 DDL
(5)做聚合运算
Env.sqlQuery("select " +……并将其转换为数据流
DataStream<ProvinceStats> provinceStatsDataStream =
 tableEnv.toAppendStream(provinceStateTable, ProvinceStats.class);
(6)定义地区统计宽表实体类并写入到ClickHouse(addSink)
五、关键词主题表(Flink SQL)
1、需求分析
维度聚合决定关键词的大小
来源:用户在搜索框中的搜索、以商品为主题的统计中获取
2、搜索关键词的实现
(1)使用IK分词器对字符串进行分词
(2)编写自定义函数,将分词器加入FlinkSQL中
Flink的自定义函数包括:Scalar Function(相当于 Spark 的 UDF)、Table Function(相当于 Spark 的 UDTF)、Aggregation Functions (相当于 Spark 的 UDAF)
由于分词是一对多的拆分,应该选择TableFunction
封装 KeywordUDTF 函数,自定义UDTF,继承TableFunction
(3)定义Table流环境
(4)注册自定义函数,将数据源定义为动态表
(5)过滤非空数据 tableEnv.sqlQuery
(6)利用 UDTF 进行拆分(SQL内部)LATERAL TABLE(ik_analyze(fullword)) as T(keyword)");
(7)聚合,根据各个关键词出现次数进行 ct
(8)转换为流并写入 ClickHouse
建表、封装实体类、添加sink
六、总结
1、DWS 层主要是基于 DWD 和 DWM 层的数据进行轻度聚合统计
2、利用 union 操作实现多流的合并
3、窗口聚合操作
4、对 clickhouse 数据库的写入操作
5、FlinkSQL 实现业务
6、分词器的使用
7、在 FlinkSQL 中自定义函数的使用
【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词的更多相关文章
- 美团点评基于 Flink 的实时数仓建设实践
		https://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651749037&idx=1&sn=4a448647b3dae5 ... 
- 基于 Kafka 的实时数仓在搜索的实践应用
		一.概述 Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 ... 
- 实时数仓(二):DWD层-数据处理
		目录 实时数仓(二):DWD层-数据处理 1.数据源 2.用户行为日志 2.1开发环境搭建 1)包结构 2)pom.xml 3)MykafkaUtil.java 4)log4j.properties ... 
- HBase实战 | 知乎实时数仓架构演进
		https://mp.weixin.qq.com/s/hx-q13QteNvtXRpNsE5Y0A 作者 | 知乎数据工程团队编辑 | VincentAI 前线导读:“数据智能” (Data Inte ... 
- (转)用Flink取代Spark Streaming!知乎实时数仓架构演进
		转:https://mp.weixin.qq.com/s/e8lsGyl8oVtfg6HhXyIe4A AI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就 ... 
- flink实时数仓从入门到实战
		第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contri ... 
- 基于Flink构建全场景实时数仓
		目录: 一. 实时计算初期 二. 实时数仓建设 三. Lambda架构的实时数仓 四. Kappa架构的实时数仓 五. 流批结合的实时数仓 实时计算初期 虽然实时计算在最近几年才火起来,但是在早期也有 ... 
- 基于 Flink 的实时数仓生产实践
		数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战.在智能商业中,数据的结果代表了用户反馈.获取数据的及时性尤为重要.快速获取数据反馈能够帮助公司更快地做出决策,更好地进行 ... 
- 更强大的实时数仓构建能力!分析型数据库PostgreSQL 6.0新特性解读
		阿里云 AnalyticDB for PostgreSQL 为采用MPP架构的分布式集群数据库,完备支持SQL 2003,部分兼容Oracle语法,支持PL/SQL存储过程,触发器,支持标准数据库事务 ... 
- Clickhouse实时数仓建设
		1.概述 Clickhouse是一个开源的列式存储数据库,其主要场景用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告.今天,笔者就为大家介绍如何使用Clickhouse来构建实 ... 
随机推荐
- 云服务器 Centos7 部署 Elasticsearch 8.0 + Kibana 8.0 指南
			文章转载自:https://mp.weixin.qq.com/s/iPfh9Mkwxf5lieiqt6ltxQ 服务器是命令行模式登录,没法以浏览器方式访问.而官方推荐的快捷部署方式,在kibana ... 
- 如何在Elasticsearch中使用pipeline API来对事件进行处理
			一个processor就像是Logstash里的一个filter pipeline是一组processor 
- Gitlab注册Runner
			1.先启动Gitlab,然后登陆进去,找到项目设置界面 2.部署Runner 这里采用docker安装的方式,也可以采用其他方式安装 # 创建docker镜像使用的数据卷 {20-07-16 16:2 ... 
- CentOS系统磁盘目录空间调整
			前几天装了几台linux服务器,安装操作系统的时候,选择了默认磁盘分区,结果导致后面主目录分区空间不够用了,需要把其他分区的空间划分给主分区一点. 下面以CentOS6.5演示: 一.查看当前系统的磁 ... 
- C#-01 关于C#中传入参数的一些用法
			实验环境 实验所处环境位于vs2019环境中 学习内容 一.最基础的参数传入:值参数 对于这种传入,和其他的c,c++编程语言参数传入一样,没有太大差别,在这里给如下例子: 虽然这里并没有进行传参但是 ... 
- 适用于纯64位Linux系统无需multilib运行win32软件的Wine
			链接: https://pan.baidu.com/s/1qbDGz8mI-TtZLOFvEQetbg 提取码: uk6u 食用方法:解包到~ export HOQEMU=$HOME/hangover ... 
- SQL语句——为什么分组函数(多行处理函数)不能用在where语句之后?
			在SQL语句中,常见的分组查询函数为: sum()求和 avg()求平均值 min()求最小值 max()求最大值 count()求数目 在分组函数中有几个重要的特征: 1.分组函数进行时自动忽略nu ... 
- P3402 可持久化并查集
			P3402 通过主席树维护不同版本的并查集,注意要采用按秩合并的方式,路径压缩可能会爆. 1 #include <bits/stdc++.h> 2 using namespace std; ... 
- 路径分析—PostgreSQL+GeoServer+Openlayers(二)
			路径分析-QGIS+PostgreSQL+PostGIS+pgRouting(一) 路径分析-PostgreSQL+GeoServer+Openlayers(二) 前言 上一篇文章中实现数据库层面的路 ... 
- File常用的方法操作、在磁盘上创建File、获取指定目录下的所有文件、File文件的重命名、将数据写入File文件
			文章目录 1.基本介绍 2.构造方法 3.常用的方法 4.代码实例 4.1 创建文件和目录(目录不存在) 4.1.1 代码 4.1.2 测试结果 4.2 测试目录存在的情况.直接写绝对的路径名 4.2 ... 
