【DM论文阅读杂记】复杂社区网络
Paper Title
Community Structure in Time-Dependent, Multiscale, and Multiplex Networks
Basic algorithm and main steps
Basic ideas
The paper generalizes the determination of community structure via quality functions to multislice networks, and derive a null model in terms of stability of communities under Laplacian dynamics.
Derivation of the quality function
Restricted our attention to unipartite, undirected network slices \((A_{ijs}= A_{jis})\) and couplings $(C_{jrs} = C_{jsr}) $ .
$ \omega $: Slice coupling strengths.
$ A_{ijs} $ : at slice \(s\), the connection node \(i\) and node \(j\)
$ C_{jrs} $: the connection between slice \(r\) and slice \(s\)
$ k_{js} = \sum_i A_{ijs} $ : the degree / strength of the node $ j $ on slice $ s $
$ C_{js} = \sum_r C_{jsr} $ : the strength across slice $ s $
multiple strength : $ \kappa {js} = k + C_{js} $
The expected weight of the edge between $ i $ and $ j $ under Laplacian dynamics:
\]
Using the steady-state probability distribution
$ p^*{jr} = \kappa / 2\mu , ( 2\mu = \sum_{jr} \kappa_{jr} ) $
$ \gamma_s $: revolution parameter
Conditional propability:
\]
$ m_s = \sum_j k_{js} $
Quality function:
\]
Recover null model
Recovered the standard null model for directed networks (with a resolution parameter) by generalizing the Laplacian dynamics to include motion along different kinds of connections, giving multiple resolution parameters and spreading weights.
Motivation
- In terms of community detection, departed null models have not been available for time-dependent networks.
- One solution: piece together the structures obtained at different times or have abandoned quality functions in favor of such alternatives as the Minimum
Description Length principle. - Another solution: tensor decomposition, without qualtiy-function.
Contribution
- Generalize the determination of community structure via quality functions to multislice networks, removing the limits.
- Formulate a null model in terms of stability of communities under Laplacian dynamics.
My own idea
Some analysis
- Fig 2 is the experiment result on the dataset of the Zachary Karate Club network. There is 34 nodes and 16 slices (with resolution parameters $\gamma_s $= { 0 . 25, 0 . 5 , …, 4 } and $\omega $= {0,0.1,1}). Other things being equal, the larger \(\gamma\) is, the more communities is. The $ \omega $ means tighter connections among time slices. The horizontal axis is $ \gamma $, and the vertical axis is the 34 members. For any one of the three pictures, the number of communities increases as the $\gamma $ increases. With $\omega $ = 0.1,1, with \(\gamma\) increasing, nodes assigned to the same may keep in the same communities or be partitioned to different communities. However, comparing to the ones with larger slice coupling strengths( the second and the third picture ), the one ignoring slice coupling ( the first picture, with $ \omega $ = 0 ) will lead to messy clustering results (eg. both the \(\gamma\) = 0.25 and the \(\gamma\) have two communities, but they are not the same two communities) . Therefore, taking slice coupling strengths into consideration can improve the performance of the community detection.
Confuse
- What confuses me is the details of derivating the quality function.
Shortcoming
- The paper lacks comparing the performance of their novel algorithm with others.
Others
I have learnt the null model and quality function of community detection in one dimesion, which is in the monority and restricted greatly. Through this paper, I know the methology in mutiscale and mutiplex networks.
\[Q = \frac{1}{2m}\sum_{s \in S}\sum_{i, j \in s}(A_{ij} - \frac{k_i k_j}{2m}) =\\
= \frac{1}{2m}\sum_{i, j}(A_{ij} - \frac{k_i k_j}{2m}) \delta(g_i,g_j)
\]$ \delta(g_i, g_j )$ = 1 if nodes \(i\) and \(j\) are in the same communities and 0 otherwise.
Unfinished: reproduct the code and results.
【DM论文阅读杂记】复杂社区网络的更多相关文章
- 【CV论文阅读】生成式对抗网络GAN
生成式对抗网络GAN 1. 基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...
- [论文阅读]阿里DIN深度兴趣网络之总体解读
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...
- [论文阅读]阿里DIEN深度兴趣进化网络之总体解读
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...
- [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering
[论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- 多目标跟踪:CVPR2019论文阅读
多目标跟踪:CVPR2019论文阅读 Robust Multi-Modality Multi-Object Tracking 论文链接:https://arxiv.org/abs/1909.0385 ...
- 深度学*点云语义分割:CVPR2019论文阅读
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...
- 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)
白翔的CRNN论文阅读 1. 论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...
随机推荐
- 【SW】利用3D打印机打印 PCB 钢网的方法
每完成一个小作品以后,PCB打样回来,手工焊接着费时费力,定制钢网又未免太过浪费,想到自己有一台 FDM 3D 打印机,是不是可以通过 3D 打印机打印 "钢网" 呢? 在网上也翻 ...
- Java8Stream流
Stream流呢,以前我也有所了解,像一些面试题中也出现过,Java8的新特性,有一块就是这个Stream操作集合,而且在看一些项目中也使用的比较多.但总感觉自己学的一知半解,所以今天打算系统的过一下 ...
- 使用 flexible.js + rem 制作苏宁移动端首页
一.技术选型 二.搭建相关文件夹 三.设置视口标签以及引入初始化样式文件和js文件 四.body 样式 五.rem 适配方案二 body样式修改 index.css body { min-width: ...
- ASP.NET Core - IStartupFilter 与 IHostingStartup
1. IStartupFilter 上面讲到的方式虽然能够根据不同环境将Startup中的启动逻辑进行分离,但是有些时候我们还会可以根据应用中的功能点将将一系列相关中间件的注册封装到一起,从 St ...
- Java的两个好用的工具包 Apache commons
Apache commons 介绍 这是apache commons lang3的工具类的截图 这个工具,小皮一般用在业务层较多 这是apache commons codec下面的工具 这个工具包,今 ...
- Serverless Streaming:毫秒级流式大文件处理探秘
摘要:本文将以图片处理的场景作为例子详细描述当前的问题以及华为云FunctionGraph函数工作流在面对该问题时采取的一系列实践. 文章作者|旧浪:华为云Serverless研发专家.平山:华为云中 ...
- JZOJ 1077. 【GDKOI2006】防御力量
\(\text{Solution}\) 首先这个题目描述得不清不楚 反正做法是过 \(A\) 城引一条直线,算出直线两侧点数的 \(min\) 找到最优直线,即 \(min\) 最小的 那么重点在判断 ...
- CF1250C Trip to Saint Petersburg
题目传送门 思路 线段树入门题. 不妨固定一个右端点 \(r\),把所有右端点小于 \(r\) 的区间都在 \(1\) 至此区间的左端点处 update 一个 \(p\),然后每次都给区间 \(1\) ...
- 题解 CF17201 A~D2
A 先约分,显然答案必然是 0 或 1 或 2 相等为 0,主要考虑 1 或 2 的情况. 假设 \(a>b\),令 \(c = a/b\),如果 \(c\) 为整数答案为 \(1\),否则为 ...
- keep-alive详解
1.什么是keep-alive? keep-alive 是 Vue 的内置组件,当它包裹动态组件时,会缓存不活动的组件实例,而不是销毁它们.keep-alive 是一个抽象组件:它自身不会渲染成一个 ...