Paper Title

Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

Basic algorithm and main steps

Basic ideas

The paper generalizes the determination of community structure via quality functions to multislice networks, and derive a null model in terms of stability of communities under Laplacian dynamics.

Derivation of the quality function

Restricted our attention to unipartite, undirected network slices \((A_{ijs}= A_{jis})\) and couplings $(C_{jrs} = C_{jsr}) $ .

$ \omega $: Slice coupling strengths.

$ A_{ijs} $ : at slice \(s\), the connection node \(i\) and node \(j\)

$ C_{jrs} $: the connection between slice \(r\) and slice \(s\)

$ k_{js} = \sum_i A_{ijs} $ : the degree / strength of the node $ j $ on slice $ s $

$ C_{js} = \sum_r C_{jsr} $ : the strength across slice $ s $

multiple strength : $ \kappa {js} = k + C_{js} $

The expected weight of the edge between $ i $ and $ j $ under Laplacian dynamics:

\[\dot{P_{is}} = \sum_{jr} \frac{(A_{ijs}\delta_{sr}+\delta_{ij}C_{jsr})p_{jjr}}{\kappa_{jr}} - p_{is}
\]

Using the steady-state probability distribution

$ p^*{jr} = \kappa / 2\mu , ( 2\mu = \sum_{jr} \kappa_{jr} ) $

$ \gamma_s $: revolution parameter

Conditional propability:

\[\rho_{is|js}P^*_{jr} = (\frac{k_{is}}{2m_s}\frac{k_jr}{\kappa_jr}\delta_{sr} + \frac{C_{jsr}}{C_{jr}} \frac{C_{jr}}{\kappa_{jr}} \delta_{ij}) \frac{\kappa_{jr}}{2 \mu}
\]

$ m_s = \sum_j k_{js} $

Quality function:

\[Q = \frac{1}{2\mu}\sum_{ijsr} \bigg[\bigg( A_{ijs} - \gamma_s \frac{k_{is} k_{js}}{2m_s}\bigg)\delta_{sr} + \delta_{ij}C_{jsr} \bigg]
\]

Recover null model

Recovered the standard null model for directed networks (with a resolution parameter) by generalizing the Laplacian dynamics to include motion along different kinds of connections, giving multiple resolution parameters and spreading weights.

Motivation

  • In terms of community detection, departed null models have not been available for time-dependent networks.
  • One solution: piece together the structures obtained at different times or have abandoned quality functions in favor of such alternatives as the Minimum

    Description Length principle.
  • Another solution: tensor decomposition, without qualtiy-function.

Contribution

  • Generalize the determination of community structure via quality functions to multislice networks, removing the limits.
  • Formulate a null model in terms of stability of communities under Laplacian dynamics.

My own idea

Some analysis

  • Fig 2 is the experiment result on the dataset of the Zachary Karate Club network. There is 34 nodes and 16 slices (with resolution parameters $\gamma_s $= { 0 . 25, 0 . 5 , …, 4 } and $\omega $= {0,0.1,1}). Other things being equal, the larger \(\gamma\) is, the more communities is. The $ \omega $ means tighter connections among time slices. The horizontal axis is $ \gamma $, and the vertical axis is the 34 members. For any one of the three pictures, the number of communities increases as the $\gamma $ increases. With $\omega $ = 0.1,1, with \(\gamma\) increasing, nodes assigned to the same may keep in the same communities or be partitioned to different communities. However, comparing to the ones with larger slice coupling strengths( the second and the third picture ), the one ignoring slice coupling ( the first picture, with $ \omega $ = 0 ) will lead to messy clustering results (eg. both the \(\gamma\) = 0.25 and the \(\gamma\) have two communities, but they are not the same two communities) . Therefore, taking slice coupling strengths into consideration can improve the performance of the community detection.

Confuse

  • What confuses me is the details of derivating the quality function.

Shortcoming

  • The paper lacks comparing the performance of their novel algorithm with others.

Others

  • I have learnt the null model and quality function of community detection in one dimesion, which is in the monority and restricted greatly. Through this paper, I know the methology in mutiscale and mutiplex networks.

    \[Q = \frac{1}{2m}\sum_{s \in S}\sum_{i, j \in s}(A_{ij} - \frac{k_i k_j}{2m}) =\\
    = \frac{1}{2m}\sum_{i, j}(A_{ij} - \frac{k_i k_j}{2m}) \delta(g_i,g_j)
    \]

    $ \delta(g_i, g_j )$ = 1 if nodes \(i\) and \(j\) are in the same communities and 0 otherwise.

  • Unfinished: reproduct the code and results.

【DM论文阅读杂记】复杂社区网络的更多相关文章

  1. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  2. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  3. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  4. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

  5. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  6. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

  7. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  8. 多目标跟踪:CVPR2019论文阅读

    多目标跟踪:CVPR2019论文阅读 Robust Multi-Modality Multi-Object Tracking  论文链接:https://arxiv.org/abs/1909.0385 ...

  9. 深度学*点云语义分割:CVPR2019论文阅读

    深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...

  10. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

随机推荐

  1. 【学习笔记】QT从入门到实战完整版(菜单栏、工具栏、浮动窗口、状态栏、中心部件)(3)

    QMainWindow QMainWindow 是一个为用户提供主窗口程序的类,包含以下几种类型部件,是许多应用程序的基础. 示例代码 void MainWindow::test() { // --- ...

  2. JSP第五次作业

    1.教材P78-79  例4-9 1 <%@ page language="java" import="java.util.*" pageEncoding ...

  3. avue入门

    <html> <head> <script src="https://cdn.jsdelivr.net/npm/vue@2.6.14/dist/vue.min. ...

  4. YonBuilder移动开发平台App拉起第三方应用

    在App的开发过程中,有一种常见场景,就是拉起第三方app,那么使用YonBuilder移动开发做app的时候,是怎么拉起第三方App的呢,下边我们讲一下步骤. 我们以安卓应用打开支付宝为例进行说明: ...

  5. 工具-使用org.openjdk.jol查看对象在内存中的布局

    1 添加依赖 <dependency> <groupId>org.openjdk.jol</groupId> <artifactId>jol-core& ...

  6. SQLSERVER 临时表和表变量到底有什么区别?

    一:背景 1. 讲故事 今天和大家聊一套面试中经常被问到的高频题,对,就是 临时表 和 表变量 这俩玩意,如果有朋友在面试中回答的不好,可以尝试看下这篇能不能帮你成功迈过. 二:到底有什么区别 1. ...

  7. Ubuntu18完全卸载php7.2

    转载csdn: Ubuntu18完全卸载php7.2_yisonphper的博客-CSDN博客_ubuntu 卸载php8

  8. select去除默认样式

    select { /*Chrome同Firefox与IE里面的右侧三角显示的样式不同*/ border: solid 1px #ddd; /*将默认的select选择框样式清除*/ appearanc ...

  9. CF825F - String Compression

    题意:压缩字符串,把字符串分成若干个子串,每个子串可以被压缩成"循环次数 \(+\) 循环节"的形式,求最小长度. dp 求 lcp 先 \(O(n^2)\) dp 求出所有后缀对 ...

  10. Python实战项目5-Git远程仓库/分支合并/冲突解决

    Git分支 为什么要有分支 可以保证主分支的版本都是可以查看的版本 我们都在开发分支开发,开发完成 合并代码 分支操作 分支查看 git branch 分支创建 git branch 分支名 分支切换 ...