【DM论文阅读杂记】复杂社区网络
Paper Title
Community Structure in Time-Dependent, Multiscale, and Multiplex Networks
Basic algorithm and main steps
Basic ideas
The paper generalizes the determination of community structure via quality functions to multislice networks, and derive a null model in terms of stability of communities under Laplacian dynamics.
Derivation of the quality function
Restricted our attention to unipartite, undirected network slices \((A_{ijs}= A_{jis})\) and couplings $(C_{jrs} = C_{jsr}) $ .
$ \omega $: Slice coupling strengths.
$ A_{ijs} $ : at slice \(s\), the connection node \(i\) and node \(j\)
$ C_{jrs} $: the connection between slice \(r\) and slice \(s\)
$ k_{js} = \sum_i A_{ijs} $ : the degree / strength of the node $ j $ on slice $ s $
$ C_{js} = \sum_r C_{jsr} $ : the strength across slice $ s $
multiple strength : $ \kappa {js} = k + C_{js} $
The expected weight of the edge between $ i $ and $ j $ under Laplacian dynamics:
\]
Using the steady-state probability distribution
$ p^*{jr} = \kappa / 2\mu , ( 2\mu = \sum_{jr} \kappa_{jr} ) $
$ \gamma_s $: revolution parameter
Conditional propability:
\]
$ m_s = \sum_j k_{js} $
Quality function:
\]
Recover null model
Recovered the standard null model for directed networks (with a resolution parameter) by generalizing the Laplacian dynamics to include motion along different kinds of connections, giving multiple resolution parameters and spreading weights.
Motivation
- In terms of community detection, departed null models have not been available for time-dependent networks.
- One solution: piece together the structures obtained at different times or have abandoned quality functions in favor of such alternatives as the Minimum
Description Length principle. - Another solution: tensor decomposition, without qualtiy-function.
Contribution
- Generalize the determination of community structure via quality functions to multislice networks, removing the limits.
- Formulate a null model in terms of stability of communities under Laplacian dynamics.
My own idea
Some analysis
- Fig 2 is the experiment result on the dataset of the Zachary Karate Club network. There is 34 nodes and 16 slices (with resolution parameters $\gamma_s $= { 0 . 25, 0 . 5 , …, 4 } and $\omega $= {0,0.1,1}). Other things being equal, the larger \(\gamma\) is, the more communities is. The $ \omega $ means tighter connections among time slices. The horizontal axis is $ \gamma $, and the vertical axis is the 34 members. For any one of the three pictures, the number of communities increases as the $\gamma $ increases. With $\omega $ = 0.1,1, with \(\gamma\) increasing, nodes assigned to the same may keep in the same communities or be partitioned to different communities. However, comparing to the ones with larger slice coupling strengths( the second and the third picture ), the one ignoring slice coupling ( the first picture, with $ \omega $ = 0 ) will lead to messy clustering results (eg. both the \(\gamma\) = 0.25 and the \(\gamma\) have two communities, but they are not the same two communities) . Therefore, taking slice coupling strengths into consideration can improve the performance of the community detection.
Confuse
- What confuses me is the details of derivating the quality function.
Shortcoming
- The paper lacks comparing the performance of their novel algorithm with others.
Others
I have learnt the null model and quality function of community detection in one dimesion, which is in the monority and restricted greatly. Through this paper, I know the methology in mutiscale and mutiplex networks.
\[Q = \frac{1}{2m}\sum_{s \in S}\sum_{i, j \in s}(A_{ij} - \frac{k_i k_j}{2m}) =\\
= \frac{1}{2m}\sum_{i, j}(A_{ij} - \frac{k_i k_j}{2m}) \delta(g_i,g_j)
\]$ \delta(g_i, g_j )$ = 1 if nodes \(i\) and \(j\) are in the same communities and 0 otherwise.
Unfinished: reproduct the code and results.
【DM论文阅读杂记】复杂社区网络的更多相关文章
- 【CV论文阅读】生成式对抗网络GAN
生成式对抗网络GAN 1. 基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...
- [论文阅读]阿里DIN深度兴趣网络之总体解读
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...
- [论文阅读]阿里DIEN深度兴趣进化网络之总体解读
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...
- [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering
[论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
- 多目标跟踪:CVPR2019论文阅读
多目标跟踪:CVPR2019论文阅读 Robust Multi-Modality Multi-Object Tracking 论文链接:https://arxiv.org/abs/1909.0385 ...
- 深度学*点云语义分割:CVPR2019论文阅读
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...
- 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)
白翔的CRNN论文阅读 1. 论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...
随机推荐
- LeetCode_387. 字符串中的第一个唯一字符
写在前面 原文地址:https://leetcode.cn/problems/first-unique-character-in-a-string/ 难度:简单 题目 给定一个字符串 s ,找到 它的 ...
- 洛谷P1365 期望dp
题目描述 一个o/x序列的得分为其中每个o的极大连续子段长度的平方和,比如ooxxxxooooxxx,分数就是 \(2 \times 2 + 4 \times 4 = 4 +16=20.\) 现给定一 ...
- 无法从“System.ReadOnlyMemory<byte>”转换为“byte[]”
1.问题复现 RabbitMQ的官方示例:RabbitMQ消费端(接收端)获取消息时抛出异常,具体代码如下 var consumer = new EventingBasicConsumer(chann ...
- Eureka、Consul、Zookeeper注册中心总结
组件名 编写语言 CAP 服务健康检查 对外暴露接口 Springcloud集成 Eureka Java AP 可配支持(安全机制) Http √ Consul Go CP 支持 Http/DNS √ ...
- SpringMVC的文件、数据校验(Vaildator、Annotation JSR-303)
SpringMvc的文件上传下载: 文件上传 单文件上传 1.底层使用的是Apache fileupload组件进行上传的功能,Springmvc 只是对其进行了封装,简化开发, pom.xml &l ...
- 【TS】联合类型--类型断言--类型推断
联合类型 在实际开发中,我们接收的变量可能不是一个固定的数据类型,而是动态的多个数据类型,此时用单个固定的数据类型去接收很明显是不行的,为了解决这种可能会接收多个不同数据类型的变量就需要用到联合类型. ...
- dataset的基本使用
在折线图(柱状.散点图类似)中使用 案例一(默认方式) let option={ dataset:{ source:[ ["1","2","3&quo ...
- K8s 网络新手教程(Kubernetes Networking Guide for Beginners)
K8s 网络新手教程(Kubernetes Networking Guide for Beginners) 原文链接: Kubernetes Networking Guide for Beginner ...
- 代码随想录算法训练营day18 | leetcode 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树
LeetCode 513.找树左下角的值 分析1.0 二叉树的 最底层 最左边 节点的值,层序遍历获取最后一层首个节点值,记录每一层的首个节点,当没有下一层时,返回这个节点 class Solutio ...
- vue的数据更新视图不同步的处理用Vue.$set()
// vue的数据更新视图不同步的处理用Vue.$set() // 通过Vue.set方法设置data属性vm.$set(最终值,数组索引,数组值) ==Vue.$set(arr,index,val) ...