《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili

Basic Convolution Neural Network

1、全连接网络

线性层串行—全连接网络

每一个输入和输出都有权重--全连接层

全连接网络在处理图像时,直接将每一行像素拼接成向量,丧失了图像的空间结构

2、CNN结构

CNN在处理图像时,保留了图像的空间结构信息

卷积神经网络:卷积运算(特征提取)à转换成向量à全连接网络(分类)

3、卷积过程

1×28×28是C(channle)×W(width)×H(Hight),就是通道数×图像宽度×图像高度

 

①单通道卷积(矩阵数乘)

②三通道卷积

③N通道卷积

每一个卷积核的通道数量 = 输入的通道数量

卷积核的个数 = 输出的通道数量

 4、下采样(subsampling)---Max Pooling

下采样的目的是减少特征图像的数据量,降低运算需求。在下采样过程中,通道数(Channel)保持不变,图像的宽度和高度发生改变

5、全连接层

先将原先多维的卷积结果通过全连接层转为一维的向量,再通过多层全连接层将原向量转变为可供输出的向量。

卷积和下采样都是在特征提取

全连接层才是分类

6、CNN

①卷积操作

Pytorch输入数据必须是小批量数据,设置batch_size

需要确定的值:输入的通道(in_channels)、输出的通道(out_channels)、卷积核的大小(kernel_size:3x3)

②Padding,向外填充

③Stride—步长

有效降低图像的宽度和高度

④下采样:Max Pooling Layer

默认Stride=2

⑤整体结构

⑥用CPU或GPU进行模型的训练和测试

torch.device

完整代码

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim # prepare dataset batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # design model using class class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10) def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x) return x model = Net()
## Device—选择是用GPU还是用CPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device) # construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # training cycle forward, backward, update def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad() outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step() running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0 def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total)) if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()

运行结果

Pytorch实战学习(六):基础CNN的更多相关文章

  1. Java学习 (六)基础篇 类型转换

    类型转换 由于Java是强类型语言,所以要进行有些运算的时候,需要用到类型转换 字节大小(容量)-> 低--------------------------------------------- ...

  2. 深度学习之PyTorch实战(1)——基础学习及搭建环境

    最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...

  3. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  4. Spring实战第六章学习笔记————渲染Web视图

    Spring实战第六章学习笔记----渲染Web视图 理解视图解析 在之前所编写的控制器方法都没有直接产生浏览器所需的HTML.这些方法只是将一些数据传入到模型中然后再将模型传递给一个用来渲染的视图. ...

  5. 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码

    PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...

  6. 参考《深度学习之PyTorch实战计算机视觉》PDF

    计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...

  7. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  8. Docker虚拟化实战学习——基础篇(转)

    Docker虚拟化实战学习——基础篇 2018年05月26日 02:17:24 北纬34度停留 阅读数:773更多 个人分类: Docker   Docker虚拟化实战和企业案例演练 深入剖析虚拟化技 ...

  9. Pytorch_第六篇_深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数

    深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习 ...

  10. PyTorch 实战:计算 Wasserstein 距离

    PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...

随机推荐

  1. linux-各个目录下重要文件、用户、用户组

    1.⽹络不通排查流程 1. 确认⽹关地址是否通畅 2. 确认⽹卡配置是否正确 3. 确认⽹络管理服务是否关闭 systemctl stop NetworkManager systemctl disab ...

  2. Django-Ajax、form组件

    1.Ajax 1.AJAX:不是新的编程语言,而是一种使用现有标准的新方法,我们目前学习的是jQuery版本.特点:异步提交,局部刷新. 2.AJAX 最大的优点是在不重新加载整个页面的情况下,可以与 ...

  3. day05-SpringMVC底层机制简单实现-01

    SpringMVC底层机制简单实现-01 主要完成:核心分发控制器+Controller和Service注入容器+对象自动装配+控制器方法获取参数+视图解析+返回JSON格式数据 1.搭建开发环境 创 ...

  4. P13_协同工作_小程序权限管理的概念以及成员管理的两个方面

    协同工作和发布 - 协同工作 了解权限管理需求 在中大型的公司里,人员的分工非常仔细:同一个小程序项目,一般会有不同岗位.不同角色的员工同时参与设计与开发. 此时出于管理需要,我们迫切需要对不同岗位. ...

  5. P4_创建第一个小程序项目

    设置外观和代理 创建小程序项目 点击"加号"按钮 填写项目信息 项目创建完成 在模拟器上查看项目效果 在真机上预览项目效果 主界面的 5 个组成部分

  6. STM32F4跳转函数

    JMP2APP void JMP2APP(void) { pFunction Jump_To_Application; uint32_t JumpAddress; if (((*(__IO uint3 ...

  7. Networking && Internet 计网学习笔记一

    Networking && Internet 计网学习笔记一 参考书籍: James F. Kurose, Keith W. Ross. 计算机网络-自顶向下方法 (7th). 机械工 ...

  8. 达标式减量策略又一例证(STRASS研究)

    标签: 类风湿关节炎; T2T策略; TNF抑制剂; 药物减停; STRASS研究 达标式减量策略又一例证(STRASS研究): RA维持期个体化减停TNF拮抗剂是可能的 电邮发布日期: 2016年1 ...

  9. .NET静态代码织入——肉夹馍(Rougamo) 发布1.4.0

    肉夹馍(https://github.com/inversionhourglass/Rougamo)通过静态代码织入方式实现AOP的组件,其主要特点是在编译时完成AOP代码织入,相比动态代理可以减少应 ...

  10. vue3中inject无法获取provide传递的最新的值

    // 爷组件  import { defineComponent, reactive, toRefs, onMounted, provide ,computed} from 'vue';  const ...