在Vue的mixins(混入)里面调用Vuex(@/store/index.js)的函数
第一步:在mixin.js里面引入 mapMutations

第二步:跟组件内调用一样,在methods里面写 "...mapMutations(['xxx'])",

然后LZ就可以在mixin下的函数里面直接调用图片中的exit()函数了
在Vue的mixins(混入)里面调用Vuex(@/store/index.js)的函数的更多相关文章
- 踩坑记录-nuxt引入vuex报错store/index.js should export a method that returns a Vuex instance.
错误 store/index.js代码如下: import Vue from 'vue'; import Vuex from 'vuex'; import city from './moudle/ci ...
- 使用vue的mixins混入实现对正在编辑的页面离开时提示
mixins.ts import { Vue, Component, Watch } from "vue-property-decorator" Component.registe ...
- vue从入门到进阶:Vuex状态管理(十)
Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 在 Vue 之后引入 vuex 会进行自动 ...
- 优雅的写好Vue项目代码 — 路由拆分、Vuex模块拆分、element按需加载
目录 路由的拆分 VUEX模块拆分 Element UI库按需加载的优雅写法 路由的拆分 项目较大路由较多时,路由拆分是一个不错的代码优化方案,按不同业务分为多个模块,结构清晰便于统一管理. requ ...
- Vue(二十二)vuex小案例(官网计数案例整合)
1.使用 vue-cli 创建项目(具体操作可以参考前面的文章) ... 2.下载 vuex - npm install vuex -S 3.将 vuex 添加到项目中 (1)在项目中创建store文 ...
- [Nuxt] Add Arrays of Data to the Vuex Store and Display Them in Vue.js Templates
You add array of todos to the store simply by adding them to the state defined in your store/index.j ...
- 前端笔记之Vue(五)TodoList实战&拆分store&跨域&练习代理跨域
一.TodoList 1.1安装依赖 安装相关依赖: npm install --save-dev webpack npm install --save-dev babel-loader babel- ...
- python调用html内的js方法
这方面资料不多,不懂html,不懂js,略懂python的我,稍微看了点html和js,好几天的摸索,终于测试成功了. PYQT+HTML利用PYQT的webview调用JS内方法 1.python调 ...
- Vue mixins(混入)
建立一个公共组件,然后对该组件进行混入继承. 注意会走两个生命周期,谨慎使用 mixins混入,相当于生成new 组件:组件引用,相当与在父组件内开辟了一块单独的空间 mixins适用于,两个有非常相 ...
- _ 下划线 vue mixins 混入 变量前有下划线 变量不起作用
_ 下划线 vue mixins 混入 变量前有下划线 变量不起作用
随机推荐
- 计数 dp 部分例题(一~五部分)
一.状态设计和简化(状態をまとめる) 例题1:Unhappy Hacking 题意 有一个空串,可以进行下面三种操作: 在末尾加入一个 \(0\). 在末尾加入一个 \(1\). 删去末尾的数,如果串 ...
- 记录 windows RabbitMq 安装教程
安装地址:https://www.rabbitmq.com/ RabbitMq 官网下载如下两个exe文件,otp_win64_22.0.exe 文件是rabbitmq的运行环境,必须安装!!! 傻子 ...
- Java-【Arrays类】和【System类】
Arrays类 [基本介绍] JDK中提供了一个专门用于操作数组的工具类,即Arrays类,位于java util 中. 用前需导包:import java.util.Arrays; [常用方法] 返 ...
- Miller-Rabin素性判定算法
Miller-Rabin素性判定算法是一种基于概率的判定算法,每次判定n是素数的正确性概率至少为75%,出错的概率小于25%. 如果对n进行k次素性检测,如果结果n为素数,那么n为合数的概率为1/(4 ...
- KinectFusion算法论文解读/代码解读随笔
--2021.6.8 上图是kinectfusion的流程图,是整个系统的工作流.我们对上面的流程进行分析以及相关代码的解读,使用的代码库是pcl的Kinectfusion复现.(ps:因为我只在ub ...
- 使用 GIT Bash Here 打tar包文件
1.进入要被 打包的文件目录下 2.点击 Git Bash Here ---> tar cvf server.tar server/ ok!!!!!!
- win7下MongoDB安装配置
之前看windows下安装MongoDB操作很是简单,今天在自己笔记本上安装一次,各种小问题.参照网上各大神帖子,再记录下个简单流程以便以后记得. 1.MongoDB官网上下载安装包 2.运行安装包, ...
- Email Windows发送成功,Linux却发送失败的可能原因
一.linux端口被禁用,通过telnet查看.(我这里没问题) 二.排查环境参数是否一致(我这里没问题) 三.查看jdk版本原因,因为jdk1.8有的版本禁用了ssl 参阅文档:https://bl ...
- #Python #OpenCV 使用Python为你的圣诞节增添更多乐趣
目录 1.前言 2.目标与效果展示 3.下载OpenCV图形识别库 4.下载python支持的v2模块 5.图片素材 6.代码 1.前言 编辑 Merry Christmas!今天是2022 ...
- 查看Linux 日志
# 直接定位到第100行 less +100g xx.log # 定位到最后一行 less +GG xx.log # 定位到第100个字节的位置 less +100P xx.log # 直 ...