Windowing TVF

在Flink1.13版本之后出现的替代之前的Group window的产物,官网描述其 is more powerful and effective

 //TVF 中的tumble滚动窗口
 //tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
 //特别注意!!!!
 //如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段

sql实现TVF的tumble窗口实现

 package net.cyan.FlinkSql.TVF;
 ​
 import net.cyan.POJO.WaterSensor;
 import org.apache.flink.api.common.eventtime.WatermarkStrategy;
 import org.apache.flink.streaming.api.datastream.DataStream;
 import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
 import org.apache.flink.table.api.Table;
 import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
 ​
 import java.time.Duration;
 ​
 import static org.apache.flink.table.api.Expressions.$;
 ​
 public class Demo1_Window_TableAPI_Tumble {
     public static void main(String[] args) {
         //创建执行环境
         StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
         //创建表的运行环境
         StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
         env.setParallelism(1);
         DataStream<WaterSensor> waterSensorStream =
                 env.fromElements(
                         new WaterSensor("sensor_1", 1000L, 10),
                         new WaterSensor("sensor_1", 2000L, 20),
                         new WaterSensor("sensor_2", 3000L, 30),
                         new WaterSensor("sensor_1", 4000L, 40),
                         new WaterSensor("sensor_1", 5000L, 50),
                         new WaterSensor("sensor_2", 6000L, 60))
                        .assignTimestampsAndWatermarks(
                                 WatermarkStrategy
                                        .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                        .withTimestampAssigner((ws, ts) -> ws.getTs())
 ​
                        );
         //创建table
         Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
         //创建表
         tabEnv.createTemporaryView("sensor",table);
         //执行sql
         //TVF 中的tumble滚动窗口
         //tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
         //特别注意!!!!
         //如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
         tabEnv.sqlQuery("select" +
                 " window_start,window_end,id," +
                 "sum(vc) sum_vc" +
                 " from table (tumble(table sensor,descriptor(et),interval '5' second ))" +
                 " group by window_start,window_end,id ")
                .execute()
                .print();
 ​
    }
 }

sql实现TVF的滑动窗口

 //TVF 中的hop滚动窗口
 //hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在
 //first interval :滑动步长, second interval :窗口长度
 //特别注意!!!!
 // 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错
 // 例如:滑动步长为2,窗口长度就不能为5,可以为6
 // 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
 package net.cyan.FlinkSql.TVF;
 ​
 import net.cyan.POJO.WaterSensor;
 import org.apache.flink.api.common.eventtime.WatermarkStrategy;
 import org.apache.flink.streaming.api.datastream.DataStream;
 import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
 import org.apache.flink.table.api.Table;
 import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
 ​
 import java.time.Duration;
 ​
 import static org.apache.flink.table.api.Expressions.$;
 ​
 public class Demo2_Window_TVF_Hop {
     public static void main(String[] args) {
         //创建执行环境
         StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
         //创建表的运行环境
         StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
         env.setParallelism(1);
         DataStream<WaterSensor> waterSensorStream =
                 env.fromElements(
                         new WaterSensor("sensor_1", 1000L, 10),
                         new WaterSensor("sensor_1", 2000L, 20),
                         new WaterSensor("sensor_2", 3000L, 30),
                         new WaterSensor("sensor_1", 4000L, 40),
                         new WaterSensor("sensor_1", 5000L, 50),
                         new WaterSensor("sensor_2", 6000L, 60))
                        .assignTimestampsAndWatermarks(
                                 WatermarkStrategy
                                        .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                        .withTimestampAssigner((ws, ts) -> ws.getTs())
 ​
                        );
         //创建table
         Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
         //创建表
         tabEnv.createTemporaryView("sensor",table);
         //执行sql
         //TVF 中的hop滚动窗口
         //hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在
         //first interval :滑动步长, second interval :窗口长度
         //特别注意!!!!
         // 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错
         // 例如:滑动步长为2,窗口长度就不能为5,可以为6
         // 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
         tabEnv.sqlQuery("select" +
                 " window_start,window_end,id," +
                 "sum(vc) sum_vc" +
                 " from table (hop(table sensor,descriptor(et),interval '2' second,interval '6' second ))" +
                 " group by window_start,window_end,id ")
                .execute()
                .print();
 ​
 ​
 ​
    }
 }

sql实现TVF的累计窗口

累计窗口的应用:

需求:每天每隔一个小时统计一次当天的pv(浏览量)

流的方式如何解决:

1、用滚动窗口, 窗口长度设为1h

2、每天的第一个窗口清除状态,后面的不清,进行状态的累加

或者

用滚动窗口,长度设置为2day

自定义触发器,每隔1小时对窗内的元素计算一次,不关闭窗口

sql的方式如何解决?

直接使用累计窗口cumulate

 //TVF 中的cumulate累计窗口
 //cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在
 //tableName:表名
 //timecol:时间属性字段
 //step:累计步长,跟滑动步长类似
 //size:窗口长度
 //特别注意!!!!
 //1.累计窗口的步长与窗口长度同样是需要整数倍关系
 // 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
 package net.cyan.FlinkSql.TVF;
 ​
 import net.cyan.POJO.WaterSensor;
 import org.apache.flink.api.common.eventtime.WatermarkStrategy;
 import org.apache.flink.streaming.api.datastream.DataStream;
 import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
 import org.apache.flink.table.api.Table;
 import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
 ​
 import java.time.Duration;
 ​
 import static org.apache.flink.table.api.Expressions.$;
 ​
 public class Demo3_Window_TVF_cumulate {
     public static void main(String[] args) {
         //创建执行环境
         StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
         //创建表的运行环境
         StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
         env.setParallelism(1);
         DataStream<WaterSensor> waterSensorStream =
                 env.fromElements(
                         new WaterSensor("sensor_1", 1000L, 10),
                         new WaterSensor("sensor_1", 2000L, 20),
                         new WaterSensor("sensor_2", 3000L, 30),
                         new WaterSensor("sensor_1", 4000L, 40),
                         new WaterSensor("sensor_1", 5000L, 50),
                         new WaterSensor("sensor_2", 6000L, 60))
                        .assignTimestampsAndWatermarks(
                                 WatermarkStrategy
                                        .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                                        .withTimestampAssigner((ws, ts) -> ws.getTs())
 ​
                        );
         //创建table
         Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
         //创建表
         tabEnv.createTemporaryView("sensor",table);
         //执行sql
         //TVF 中的cumulate累计窗口
         //cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在
         //tableName:表名
         //timecol:时间属性字段
         //step:累计步长,跟滑动步长类似
         //size:窗口长度
         //特别注意!!!!
         //1.累计窗口的步长与窗口长度同样是需要整数倍关系
         // 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
         tabEnv.sqlQuery("select" +
                 " window_start,window_end,id," +
                 " sum(vc) sum_vc" +
                 " from table (cumulate(table sensor,descriptor(et),interval '2' second,interval '6' second)) " +
                 "group by window_start,window_end,id")
                .execute()
                .print();
    }
 }
 

FlinkSQL之Windowing TVF的更多相关文章

  1. Flink 实践教程-进阶(5):排序(乱序调整)

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  2. Storm Windowing storm滑动窗口简介

    Storm Windowing 简介 Storm可同时处理窗口内的所有tuple.窗口可以从时间或数量上来划分,由如下两个因素决定: 窗口的长度,可以是时间间隔或Tuple数量: 滑动间隔(slidi ...

  3. SQL Server 性能优化之——T-SQL TVF和标量函数

    阅读导航 1. TVF(表-值行数Table-Valued Functions)         a. 创建TVF         b. 使用TVF的低性能T-SQL         c. 使用临时表 ...

  4. jar tvf study.war jar命令查看war/jar包的内容

    jar tvf study.war 0 Thu Oct 20 14:01:18 CST 2016 META-INF/ 137 Thu Oct 20 14:01:16 CST 2016 META-INF ...

  5. [Hive - LanguageManual ] Windowing and Analytics Functions (待)

    LanguageManual WindowingAndAnalytics     Skip to end of metadata   Added by Lefty Leverenz, last edi ...

  6. pyglet: a cross-platform windowing and multimedia

    pyglet pyglet: a cross-platform windowing and multimedia library for Python.

  7. SQL Fundamentals: 子查询 || 分析函数(PARTITION BY,ORDER BY, WINDOWING)

    SQL Fundamentals || Oracle SQL语言 子查询(基础) 1.认识子查询 2.WHERE子句中使用子查询 3.在HAVING子句中使用子查询 4.在FROM子句中使用子查询 5 ...

  8. Storm API,Tutorial,Trident,Windowing BOOKS

    http://storm.apache.org/releases/1.0.0/Trident-API-Overview.html https://stackoverflow.com/questions ...

  9. 袋鼠云研发手记 | 开源·数栈-扩展FlinkSQL实现流与维表的join

    作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈.交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代.在 ...

随机推荐

  1. HTTP/3,它来了

    HTTP 3.0 是 HTTP 协议的第三个主要版本,前两个分别是 HTTP 1.0 和 HTTP 2.0 ,但其实 HTTP 1.1 我认为才是真正的 HTTP 1.0. 如果你对 HTTP 1.1 ...

  2. java单线程100%利用率

    容器内就获取个cpu利用率,怎么就占用单核100%了呢 背景:这个是在centos7 + lxcfs 和jdk11 的环境上复现的 目前这个bug已经合入到了开源社区, 链接为 https://git ...

  3. python必备基础

    1. 基础函数  序号  函数  说明  1 print()  打印  2 input()   输入   3 int()   转化为整形   4 float()  转化为浮点型   5 str()  ...

  4. 【java】学习路线9-非静态内部类、外部类

    //内部类只能在其外部类当中使用//局部内部类:定义在方法里面//如果内部类和外部类有重名,就近原则在内部类中优先访问内部类.//如果想访问宿主类的同名成员,使用OuterClass.this.xxx ...

  5. C#实现HTTP访问类HttpHelper

    在项目开发过程中,我们经常会访问第三方接口,如我们需要接入的第三方接口是Web API,这时候我们就需要使用HttpHelper调用远程接口了.示例中的HttpHelper类使用Log4Net记录了每 ...

  6. 游标长时间open导致表无法vacuum问题

    一.问题描述 用户在实际中可能会碰到类似以下 dead rows 无法 vacuum的问题,一个可能的原因是由于游标未结束的原因. test=# vacuum(verbose) t1; INFO: v ...

  7. KingbaseES 数据库软件卸载

    关键字: KingbaseES.卸载   一.安装后检查 在安装完成后,可以通过以下几种方式进行安装正确性验证: 1. 查看安装日志,确认没有错误记录; 2. 查看开始菜单: 查看应用程序菜单中是否安 ...

  8. Ubuntu 系统服务器初始化配置、安全加固、内核优化和常用软件安装的Shell脚本分享

    转载自:https://www.bilibili.com/read/cv13875402?spm_id_from=333.999.0.0 描述: 适用于企业内部 Ubuntu 操作服务器初始化.系统安 ...

  9. Nginx+lua+openresty精简系列

    1. CentOS系统安装openresty 你可以在你的 CentOS 系统中添加 openresty 仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum update 命令).运行下面的 ...

  10. Elasticsearch删除操作详解

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484022&idx=1&sn=7a4de21 ...