FlinkSQL之Windowing TVF
Windowing TVF
在Flink1.13版本之后出现的替代之前的Group window的产物,官网描述其 is more powerful and effective
//TVF 中的tumble滚动窗口
//tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
//特别注意!!!!
//如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
sql实现TVF的tumble窗口实现
package net.cyan.FlinkSql.TVF;
import net.cyan.POJO.WaterSensor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.time.Duration;
import static org.apache.flink.table.api.Expressions.$;
public class Demo1_Window_TableAPI_Tumble {
public static void main(String[] args) {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建表的运行环境
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
env.setParallelism(1);
DataStream<WaterSensor> waterSensorStream =
env.fromElements(
new WaterSensor("sensor_1", 1000L, 10),
new WaterSensor("sensor_1", 2000L, 20),
new WaterSensor("sensor_2", 3000L, 30),
new WaterSensor("sensor_1", 4000L, 40),
new WaterSensor("sensor_1", 5000L, 50),
new WaterSensor("sensor_2", 6000L, 60))
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((ws, ts) -> ws.getTs())
);
//创建table
Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
//创建表
tabEnv.createTemporaryView("sensor",table);
//执行sql
//TVF 中的tumble滚动窗口
//tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在
//特别注意!!!!
//如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
tabEnv.sqlQuery("select" +
" window_start,window_end,id," +
"sum(vc) sum_vc" +
" from table (tumble(table sensor,descriptor(et),interval '5' second ))" +
" group by window_start,window_end,id ")
.execute()
.print();
}
}
sql实现TVF的滑动窗口
//TVF 中的hop滚动窗口
//hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在
//first interval :滑动步长, second interval :窗口长度
//特别注意!!!!
// 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错
// 例如:滑动步长为2,窗口长度就不能为5,可以为6
// 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
package net.cyan.FlinkSql.TVF;
import net.cyan.POJO.WaterSensor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.time.Duration;
import static org.apache.flink.table.api.Expressions.$;
public class Demo2_Window_TVF_Hop {
public static void main(String[] args) {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建表的运行环境
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
env.setParallelism(1);
DataStream<WaterSensor> waterSensorStream =
env.fromElements(
new WaterSensor("sensor_1", 1000L, 10),
new WaterSensor("sensor_1", 2000L, 20),
new WaterSensor("sensor_2", 3000L, 30),
new WaterSensor("sensor_1", 4000L, 40),
new WaterSensor("sensor_1", 5000L, 50),
new WaterSensor("sensor_2", 6000L, 60))
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((ws, ts) -> ws.getTs())
);
//创建table
Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
//创建表
tabEnv.createTemporaryView("sensor",table);
//执行sql
//TVF 中的hop滚动窗口
//hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在
//first interval :滑动步长, second interval :窗口长度
//特别注意!!!!
// 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错
// 例如:滑动步长为2,窗口长度就不能为5,可以为6
// 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
tabEnv.sqlQuery("select" +
" window_start,window_end,id," +
"sum(vc) sum_vc" +
" from table (hop(table sensor,descriptor(et),interval '2' second,interval '6' second ))" +
" group by window_start,window_end,id ")
.execute()
.print();
}
}
sql实现TVF的累计窗口
累计窗口的应用:
需求:每天每隔一个小时统计一次当天的pv(浏览量)
流的方式如何解决:
1、用滚动窗口, 窗口长度设为1h
2、每天的第一个窗口清除状态,后面的不清,进行状态的累加
或者
用滚动窗口,长度设置为2day
自定义触发器,每隔1小时对窗内的元素计算一次,不关闭窗口
sql的方式如何解决?
直接使用累计窗口cumulate
//TVF 中的cumulate累计窗口
//cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在
//tableName:表名
//timecol:时间属性字段
//step:累计步长,跟滑动步长类似
//size:窗口长度
//特别注意!!!!
//1.累计窗口的步长与窗口长度同样是需要整数倍关系
// 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
package net.cyan.FlinkSql.TVF;
import net.cyan.POJO.WaterSensor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.time.Duration;
import static org.apache.flink.table.api.Expressions.$;
public class Demo3_Window_TVF_cumulate {
public static void main(String[] args) {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建表的运行环境
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
env.setParallelism(1);
DataStream<WaterSensor> waterSensorStream =
env.fromElements(
new WaterSensor("sensor_1", 1000L, 10),
new WaterSensor("sensor_1", 2000L, 20),
new WaterSensor("sensor_2", 3000L, 30),
new WaterSensor("sensor_1", 4000L, 40),
new WaterSensor("sensor_1", 5000L, 50),
new WaterSensor("sensor_2", 6000L, 60))
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((ws, ts) -> ws.getTs())
);
//创建table
Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime());
//创建表
tabEnv.createTemporaryView("sensor",table);
//执行sql
//TVF 中的cumulate累计窗口
//cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在
//tableName:表名
//timecol:时间属性字段
//step:累计步长,跟滑动步长类似
//size:窗口长度
//特别注意!!!!
//1.累计窗口的步长与窗口长度同样是需要整数倍关系
// 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
tabEnv.sqlQuery("select" +
" window_start,window_end,id," +
" sum(vc) sum_vc" +
" from table (cumulate(table sensor,descriptor(et),interval '2' second,interval '6' second)) " +
"group by window_start,window_end,id")
.execute()
.print();
}
}
FlinkSQL之Windowing TVF的更多相关文章
- Flink 实践教程-进阶(5):排序(乱序调整)
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...
- Storm Windowing storm滑动窗口简介
Storm Windowing 简介 Storm可同时处理窗口内的所有tuple.窗口可以从时间或数量上来划分,由如下两个因素决定: 窗口的长度,可以是时间间隔或Tuple数量: 滑动间隔(slidi ...
- SQL Server 性能优化之——T-SQL TVF和标量函数
阅读导航 1. TVF(表-值行数Table-Valued Functions) a. 创建TVF b. 使用TVF的低性能T-SQL c. 使用临时表 ...
- jar tvf study.war jar命令查看war/jar包的内容
jar tvf study.war 0 Thu Oct 20 14:01:18 CST 2016 META-INF/ 137 Thu Oct 20 14:01:16 CST 2016 META-INF ...
- [Hive - LanguageManual ] Windowing and Analytics Functions (待)
LanguageManual WindowingAndAnalytics Skip to end of metadata Added by Lefty Leverenz, last edi ...
- pyglet: a cross-platform windowing and multimedia
pyglet pyglet: a cross-platform windowing and multimedia library for Python.
- SQL Fundamentals: 子查询 || 分析函数(PARTITION BY,ORDER BY, WINDOWING)
SQL Fundamentals || Oracle SQL语言 子查询(基础) 1.认识子查询 2.WHERE子句中使用子查询 3.在HAVING子句中使用子查询 4.在FROM子句中使用子查询 5 ...
- Storm API,Tutorial,Trident,Windowing BOOKS
http://storm.apache.org/releases/1.0.0/Trident-API-Overview.html https://stackoverflow.com/questions ...
- 袋鼠云研发手记 | 开源·数栈-扩展FlinkSQL实现流与维表的join
作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈.交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代.在 ...
随机推荐
- HTTP/3,它来了
HTTP 3.0 是 HTTP 协议的第三个主要版本,前两个分别是 HTTP 1.0 和 HTTP 2.0 ,但其实 HTTP 1.1 我认为才是真正的 HTTP 1.0. 如果你对 HTTP 1.1 ...
- java单线程100%利用率
容器内就获取个cpu利用率,怎么就占用单核100%了呢 背景:这个是在centos7 + lxcfs 和jdk11 的环境上复现的 目前这个bug已经合入到了开源社区, 链接为 https://git ...
- python必备基础
1. 基础函数 序号 函数 说明 1 print() 打印 2 input() 输入 3 int() 转化为整形 4 float() 转化为浮点型 5 str() ...
- 【java】学习路线9-非静态内部类、外部类
//内部类只能在其外部类当中使用//局部内部类:定义在方法里面//如果内部类和外部类有重名,就近原则在内部类中优先访问内部类.//如果想访问宿主类的同名成员,使用OuterClass.this.xxx ...
- C#实现HTTP访问类HttpHelper
在项目开发过程中,我们经常会访问第三方接口,如我们需要接入的第三方接口是Web API,这时候我们就需要使用HttpHelper调用远程接口了.示例中的HttpHelper类使用Log4Net记录了每 ...
- 游标长时间open导致表无法vacuum问题
一.问题描述 用户在实际中可能会碰到类似以下 dead rows 无法 vacuum的问题,一个可能的原因是由于游标未结束的原因. test=# vacuum(verbose) t1; INFO: v ...
- KingbaseES 数据库软件卸载
关键字: KingbaseES.卸载 一.安装后检查 在安装完成后,可以通过以下几种方式进行安装正确性验证: 1. 查看安装日志,确认没有错误记录; 2. 查看开始菜单: 查看应用程序菜单中是否安 ...
- Ubuntu 系统服务器初始化配置、安全加固、内核优化和常用软件安装的Shell脚本分享
转载自:https://www.bilibili.com/read/cv13875402?spm_id_from=333.999.0.0 描述: 适用于企业内部 Ubuntu 操作服务器初始化.系统安 ...
- Nginx+lua+openresty精简系列
1. CentOS系统安装openresty 你可以在你的 CentOS 系统中添加 openresty 仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum update 命令).运行下面的 ...
- Elasticsearch删除操作详解
文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484022&idx=1&sn=7a4de21 ...