题意简述

给你一个 01 矩阵,每一次你可以在这个矩阵中找到一个 \(L\) 型,将它全部变成 0。\(L\) 型的定义是在一个 \(2\times2\) 矩阵中,除开一个角之外的图形,其中必须包含至少一个 1。

现在需要你找到将整个矩阵变成 1 的最大操作数。

题目分析

由于 L 型是在一个 2$\times$2 的矩阵中,所以我们不妨从这里开始分析。

1. 如果矩阵没有 0

1 1
1 1

这种情况会有 4 个 1。

显然,第一次操作至少会让三个 1 变成 0,然后转到情况 4,这时候最大操作数是 2

此时,操作数 = 1 的个数 -2。

2. 如果矩阵只有一个 0

0 1
1 1

其中的一种情况是上面这样的,这时候会有 3 个 1。

同样的,第一次操作至少会让两个 1 变成 0,然后转到情况 4,这时候最大的操作数是 2

此时,操作数 = 1 的个数 -1。

3. 如果矩阵只有两个 0

0 1 | 0 0
1 0 | 1 1

其中有两种情况如上图,这时候会有 2 个 1。

这时候第一次操作可以只改变一个 1,接着转到情况 4,最大的操作数是 2

此时,操作数 = 1 的个数。

4. 如果矩阵只有三个 0

0 0
0 1

其中一种情况如上,这时候有 1 个 1.

这时候只能改变一个 1,操作数也就是 1。同时显然,矩阵中没有 1 是操作数是 0,这里便不做分类讨论。

此时,操作数 = 1 的个数。

根据上面的分析,我们可以大胆猜想,设 1 的个数为 x,0 的个数为 y,操作数为 ans,则在 2$\times$2 矩阵中:

\(\begin{cases}
ans &= x-2 &(y=0) \\
ans &= x-1 &(y=1) \\
ans &=x &(y\ge2)
\end{cases}\)

我们尝试将结论推广到普通矩阵中。

没有 0 的情况显然和之前一样。

而这时候就不是只有 1 个 0 的情况,而是在一个 2$\times$2 矩阵中只有 1 个 0。

同样,至少有 2 个 0 的情况也需要转移到在 2$\times$2 矩阵中至少有 2 个 0。

这样我们只要求出 1 的个数并且判断在 2$\times$2 矩阵中有没有至少两个 0 即可。

为什么这种思路是正确的?

一个任意的 n\(\times\)m 矩阵(\(n,m\ge2\)),都会包含若干个 2$\times$2 的矩阵,即使矩阵可能会重叠。

如果其中有一个矩阵有大于 1 个的 0,就可以从这里开始操作,扩展到每个 2$\times$2 矩阵都有大于 1 个的 0,情况简化成最开始分析中的第三种情况。否则就只能按照第二种情况来扩展。

#include<bits/stdc++.h>
using namespace std;
const int N=5e2+5;
int n,m;
int a[N][N]; signed main(){
ios::sync_with_stdio(false);
int t;
cin>>t;
while(t--){
cin>>n>>m;
int suma=0,sumb=0;//suma是0的个数,sumb是1的个数。其实只记录其中的一个也可以
bool f=false;
for(int i=1;i<=n;i++){
string s;
cin>>s;
for(int j=0;j<m;j++) a[i][j+1]=s[j]-'0';
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(a[i][j]==0){
suma++;
//下面判断2*2矩阵中有两个0的情况,注意判断数组越界,用循环也可以
if((i+1<=n&&a[i+1][j]==0)||(i-1>=1&&a[i-1][j]==0)||(j-1>=1&&a[i][j-1]==0)||(j+1<=m&&a[i][j+1]==0)) f=true;//两个0是相邻的
else if((i+1<=n&&j+1<=m&&a[i+1][j+1]==0)||(i-1>=1&&j-1>=1&&a[i-1][j-1]==0)||(i+1<=n&&j-1>=1&&a[i+1][j-1]==0)||(i-1>=1&&j+1<=m&&a[i-1][j+1]==0)) f=true;//两个0称对角
}
else sumb++;
}
}
if(suma==0) cout<<sumb-2<<"\n";//都是1
else if(sumb==0) cout<<"0\n";//都是0
else if(f==false) cout<<sumb-1<<"\n";//所有2*2矩阵中都只有一个0
else cout<<sumb<<"\n";//任意2*2矩阵中有至少两个0
}
return 0;
}

【题解】CF1720C的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 为MySQL MGR实现简单的负载均衡代理

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 原创:万里数据库,花家舍 导读 在多写(多节点写入)数据库(例如MySQL MGR的multi-primary mode) ...

  2. Luogu5367 【模板】康托展开 (康拓展开)

    \(n^2\)暴力 #include <iostream> #include <cstdio> #include <cstring> #include <al ...

  3. LuoguP1922 女仆咖啡厅桌游吧 (树形动态规划)

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  4. 移动端实现HTML5 mp3录音踩坑指南:系统播放音量变小、一些机型录音断断续续 之 MediaRecorder和AudioWorklet的终极对决

    目录 H5录音见坑填坑 采用MediaRecorder采集音频 音频格式:WebM和PCM 从WebM封装容器中提取PCM数据 录音的兼容性 困扰已久的H5录音时系统播放音量变小的问题 H5录音见坑填 ...

  5. React报错之Unexpected default export of anonymous function

    正文从这开始~ 总览 当我们尝试使用默认导出来导出一个匿名函数时,会导致"Unexpected default export of anonymous function"警告.为了 ...

  6. 3-14 Python处理XML文件

    xml文件处理 什么是xml文件? xml即可扩展标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 从结构上,很像HTML超文本标记语言.但他们被设计的目的 ...

  7. Filter(过滤器)、ThreadLocal(本地线程)、Listener(监听器)

    Filter(过滤器) Filter过滤器它的作用是:拦截请求,过滤响应. 过滤器链 1)执行的顺序依次是: A B C Demo03 C2 B2 A2 2)如果采取的是注解的方式进行配置,那么过滤器 ...

  8. 第八篇:用css写一个登录界面

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. KingbaseES 开启事务提交跟踪

    KingbaseESV8R6有个参数 track_commit_timestamp,用来开启跟踪事务提交的时间戳. 配置 编辑kingbase.conf,添加配置如下: track_commit_ti ...

  10. KingbaseES R6 集群禁用 root ssh 后需要修改集群为es_server 案例

    案例说明: 在生产环境下,由于安全需要,主机间不允许建立root用户的ssh信任连接,这样导致KingbaseES R6 repmgr集群,通过sys_monitor.sh脚本启动集群时,节点之间不能 ...