LGP4587题解
遇到一道题,我们该做什么?
打暴力。
此题的暴力是什么?从小到大枚举答案。但这太慢了,需要一个结论来加速一下:
若 \([1,x]\) 都能够被表示出来,新加入一个数 \(y\),若 \(y>x+1\),那么新的答案仍然是 \([1,x]\);若 \(y<=x+1\),则新的答案为 \([1,x+y]\)。
不是很严谨,感性理解一下
有了这个结论,能够加速枚举答案。
对于一个可行的 \(ans\),我们统计区间中不大于 \(ans\) 的数之和 \(sum\)。若 \(sum=ans\),答案就是 \(ans\),否则将 \(ans\) 替换为 \(sum\) 继续枚举。
至于统计数的个数可以使用主席树。
这复杂度咋一看是 \((\sum a)\log (\sum a)\) 的,其实不然。
假设上一次枚举的数为 \(lst\),这一次枚举的数为 \(ans\),很容易发现这一次的 \(sum\) 包含了大于 \(lst\) 且不大于 \(ans\) 的数 废话。但第二部分的和一定大于 \(lst\),也就是说 \(sum > 2lst\),只需要 \(\log (\sum a)\) 次枚举即可。
复杂度就是 \(m\log n\log (\sum a)\) 的啦
喜闻乐见的 代码:
#include<cstdio>
const int M=1e5+5,N=1e9;
int n,m,tot,root[M];
struct Node{
int L,R,sum;
}t[M*35];
int Modify(int u,int x,int L=1,int R=N){
int id=++tot;
t[id]=t[u];t[id].sum+=x;
if(L<R){
int mid=L+R>>1;
if(x<=mid)t[id].L=Modify(t[u].L,x,L,mid);
else t[id].R=Modify(t[u].R,x,mid+1,R);
}
return id;
}
int Query(int q,int p,int x,int L=1,int R=N){
if(L==R)return t[p].sum-t[q].sum;
int mid=L+R>>1;
if(x<=mid)return Query(t[q].L,t[p].L,x,L,mid);
else return t[t[p].L].sum-t[t[q].L].sum+Query(t[q].R,t[p].R,x,mid+1,R);
}
signed main(){
register int i,L,R,x,ans;
scanf("%d",&n);
for(i=1;i<=n;++i)scanf("%d",&ans),root[i]=Modify(root[i-1],ans);
scanf("%d",&m);
for(i=1;i<=m;++i){
scanf("%d%d",&L,&R);ans=1;
while((x=Query(root[L-1],root[R],ans))>=ans)ans=x+1;
printf("%d\n",ans);
}
}
LGP4587题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 用Java开发局域网内文件传输软件遇到的一些问题
项目地址:https://github.com/b84955189/FileTransfer 由于巨懒的我不太喜欢使用U盘操作文件,特此开发一个简易的文件传输程序. 目前仅限局域网内传输,后期会尝试写 ...
- MATLAB 机器人学工具箱(Robotics Toolbox )sl_drivepoint 模型 consecutive zero crossings 问题
操作环境 工具箱:Robotics Toolbox for MATLAB 版本 10.2.1 作者 Peter Corke MATLAB版本:R2018a 操作系统:win10 问题 sl_drive ...
- Windows微信清理工具v.3.0.1
Windows微信清理工具v.3.0.1 今天,我原创的Windows微信清理工具迎来最大更新! v.3.0.0更新内容: 1.使用tkinter重构GUI,界面更简单易用! 2.增加"清理 ...
- 多图|一文详解Nacos参数!
Nacos 中的参数有很多,如:命名空间.分组名.服务名.保护阈值.服务路由类型.临时实例等,那这些参数都是什么意思?又该如何设置?接下来我们一起来盘它. 1.命名空间 在 Nacos 中通过命名空间 ...
- 数据缓存Cache
在MyBatis - 随笔分类 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中有关于Mybatis中Cache技术实现及应用介绍.Cache技术实现都是implements Cache ...
- (翻译) CAP 理论 FAQ
CAP 理论 FAQ 0. 关于这个文档 没有其它比CAP理论更引人注意的话题了, 这个FAQ的目的, 是说明对于CAP, 当前哪些是已知的, 并帮助那些刚接触这个理论的人快速了解, 并解决一些错误的 ...
- FastDFS安装和简介详细总结
1.fastDFS简介 1 FastDFS是用c语言编写的一款开源的分布式文件系统. 2 FastDFS为互联网量身定制,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用.高性能等指标, 3 ...
- 使用讯飞tts+ffmpeg自动生成视频
参考 FFmpeg 讯飞离线语音合成 起因 某日,看到一个营销号的视频说做视频日进斗金,大意是用软件识别文章小说,搭配一些图片转换成自己的视频.看完当时脑海里冒出一个念头,我也可以,于是有了这番尝试. ...
- 用这个BI工具,不会代码的业务人员也能做数据分析!
随着企业的迅速发展,企业对数据分析的需求也在不断地凸显,但我们在实际的工作中经常会遇到这样尴尬的情形:擅长数据分析的人不懂业务,擅长业务的人又不了解数据分析.那么怎么让更懂业务逻辑.业务分析需求和痛点 ...
- 项目报错:/uploads: Read-only file system(解决办法)
项目报错:/uploads: Read-only file system(解决办法) 本来以为是service层没加注解,翻到最后才发现问题 原因是项目根目录没有对应的文件夹,在项目根目录创建uplo ...