注:本篇运用大量 Katex ,如果炸了可能是运存不够也可能还要加载一会,重进几次即可。(都2202了,居然还存在我这种会炸公式的笔记本)

前言

写这篇随笔的由来是今天学习了:

不共线三点确定二次函数的表达式

知识点没有难度,就是有时解这个三元一次方程很费劲,我在家基本用的网上的在线计算器,我想找到一个类似公式可以直接套的做法。

于是乎,我学到了用 三阶行列式(link 这个函数来做。

基本定义

定义式可以简单写作:

\[D=\begin{vmatrix}
a_1&a_2&a_3\\
a_4&a_5&a_6\\
a_7&a_8&a_9
\end{vmatrix}\]

这里计算它的值可以用 对角线法 ,实际上可以假想把前两列移动到行列式后边:

\[D=\begin{vmatrix}
a_1&a_2&a_3&\color{orange}{a_1}&\color{orange}{a_2}\\
a_4&a_5&a_6&\color{orange}{a_4}&\color{orange}{a_5}\\
a_7&a_8&a_9&\color{orange}{a_7}&\color{orange}{a_8}
\end{vmatrix}\]

这样就可以定义计算:在同一个长度为 3 的对角线上的数,属于“捺”的各乘积的和减去属于“撇”的各乘积的和,即:

\[D=(a_1a_5a_9+a_2a_6\color{orange}{a_7}+a_3\color{orange}{a_4a_8})-(a_3a_5a_7+\color{orange}{a_1}a_6a_8+\color{orange}{a_2a_4}a_9)
\]

一般情况

好了,对于已知三个\((x,y)\) 的 \(y=ax^2+bx+c\) ,代入得:

\[\begin{cases}
x_1^2a+x_1b+c=y_1
\\x_2^2a+x_2b+c=y_2
\\x_3^2a+x_3b+c=y_3
\end{cases}\]

将 \(a,b,c\) 已知的系数带入行列式得:

\[D=\begin{vmatrix}
x_1^2&x_1&1\\
x_2^2&x_2&1\\
x_3^2&x_3&1
\end{vmatrix}\]

并且,可以把答案合并到一个行列式中得:

\[D_{ans}=\begin{vmatrix}
y_1\\
y_2\\
y_3
\end{vmatrix}\]

计算方法就是将 \(D_{ans}\) 从左至右(对应 \(a,b,c\))替换 \(D\) 中的一列,即:

\[D_a=\begin{vmatrix}
y_1&x_1&1\\
y_2&x_2&1\\
y_3&x_3&1
\end{vmatrix}~~~~~D_b=\begin{vmatrix}
x_1^2&y_1&1\\
x_2^2&y_2&1\\
x_3^2&y_3&1
\end{vmatrix}~~~~~D_c=\begin{vmatrix}
x_1^2&x_1&y_1\\
x_2^2&x_2&y_2\\
x_3^2&x_3&y_3
\end{vmatrix}\]

最后,答案公式就是:

\[a=\dfrac{D_a}{D},
b=\dfrac{D_b}{D},
c=\dfrac{D_c}{D}
(D\not = 0)\]

实际例子

就拿书上的例1:已知三点坐标 \((1,-3),(-1,-5),(3,-13)\) 。则方程为:

\[\begin{cases}
a+b+c=3
\\a-b+c=-5
\\9a+3b+c=-13
\end{cases}\]

可以分别得到:

\[D=\begin{vmatrix}
1&1&1\\
1&-1&1\\
9&3&1
\end{vmatrix}=16~~~~~D_{ans}=\begin{vmatrix}
3\\
-5\\
-13
\end{vmatrix}\]

代入得:

\[D_a=\begin{vmatrix}
3&1&1\\
-5&-1&1\\
-13&3&1
\end{vmatrix}=-48~~~~~D_b=\begin{vmatrix}
1&3&1\\
1&-5&1\\
9&-13&1
\end{vmatrix}=64~~~~~D_c=\begin{vmatrix}
1&1&3\\
1&-1&-5\\
9&3&-13
\end{vmatrix}=32\]

解得:

\[\begin{cases}
a=\dfrac{-48}{16}=-3
\\b=\dfrac{64}{16}=4
\\c=\dfrac{32}{16}=2
\end{cases}~~~~~\Rightarrow~~~~~y=-3x^2+4x+2\]

[whk] 解三元一次方程的更多相关文章

  1. 2013杭州网络赛D题HDU 4741(计算几何 解三元一次方程组)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. math & 三元一次方程组的解法

    math & 三元一次方程组的解法 class 6 math 例题 问题: 1. 已经做好的与没有做好的比例是 5 比 7; 2 再做好51,完成总数的 70%; 3. 问,一共要做多少朵花? ...

  3. 使用代数方程库 Algebra.js解二元一次方程

    假设二元一次方程如下: x + y = 11 x - y = 5 解方程如下: <!DOCTYPE html> <html lang="zh-CN"> &l ...

  4. Java基础_循环嵌套_打印乘法口诀、菱形,各种图形,计算二元一次和三元一次方程组_7

    循环嵌套 打印乘法口诀 for(int j=1;j<=9;j++){ for(int i=1;i<=j;i++){ System.out.print(i+"*"+j+& ...

  5. HDU 4793 Collision (解二元一次方程) -2013 ICPC长沙赛区现场赛

    题目链接 题目大意 :有一个圆硬币半径为r,初始位置为x,y,速度矢量为vx,vy,有一个圆形区域(圆心在原点)半径为R,还有一个圆盘(圆心在原点)半径为Rm (Rm < R),圆盘固定不动,硬 ...

  6. nyoj 64-鸡兔同笼 (解二元一次方程)

    64-鸡兔同笼 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:26 submit:58 题目描述: 已知鸡和兔的总数量为n,总腿数为m.输入n和m, ...

  7. matlab解三元二次方程组

    C1=7.0863; C2=6.8971; C3=0.4929; C4=0.8131; C5=1.8240; C6=3.8108; C7=3.7318; C8=-2.2238; C9=1.9905; ...

  8. 三元一次方程问题(for嵌套)

  9. VBA Promming——分支语句(解二元一次方程)

    分支语句 If expression1 Then expressions ElseIf expression2 Then expressions Else expression End If 注:VB ...

随机推荐

  1. P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)

    本题就是在一条1-n的路径上找p,q(先经过p),使得q-p最大. 考虑建正反图,正图上求出d[x],表示1-x的路径经过的节点最小值,反图上则从n开始求出f[x],x-n的最大值,最后枚举断点i,取 ...

  2. GCN的原理及其代码实现

    图数据的特征性质 图像数据是一种特殊的图数据,图像数据是标准的2D网格结构图数据.图像数据的CNN卷积神经网络算法不能直接用在图数据上,原因是图数据具有以下特殊性. 节点分布不均匀:图像数据及网格数据 ...

  3. 修改-Python函数-2

    一.导入 $$f ( x , y ) = 2 x + 3 y$$ 上面括号里面的就是数学公式里的自变量,自变量就相当于函数里的参数. 二.为什么要有参数 如果一个大楼里有两种尺寸不一的窗户,显然在没有 ...

  4. 驱动开发:内核通过PEB得到进程参数

    PEB结构(Process Envirorment Block Structure)其中文名是进程环境块信息,进程环境块内部包含了进程运行的详细参数信息,每一个进程在运行后都会存在一个特有的PEB结构 ...

  5. 任务清单小功能的实现(任务的增、删、改、查、存储)使用Vue实现

    文章目录 1.实现的效果(视频演示) 2.重点讲解(编辑的实现) 2.1 提示(官网介绍nextTick的用法) 3.编辑功能的核心代码 4.完整的代码 5.以往练习 任务清单案例(纯Vue) 实现的 ...

  6. 齐博x1标签实例:调用多个圈子同时调用相关会员

    看这一篇之前,请先看上一篇,因为他们有关联性比如要实现这样的效果 可以通过下面的代码可以实现 {qb:tag name="xxx" type="qun" row ...

  7. html页面跳转方式

    js里的方法 第一种: window.location.href = XXXX; 第二种: window.setTimeout("javascript:location.href='xxxx ...

  8. 基于JESD204B和PCIe DMA的多通道数据采集和回放系统

    基于JESD204B和PCIe DMA的多通道数据采集和回放系统 在主机端PCIe驱动的控制和调度下,数据采集与回放系统可以同时完成对多个JESD204B接口AD数据的采集以及JESD204B接口DA ...

  9. js函数组合

    纯函数和柯里化容易引起洋葱代码 函数组合可以让我们把细粒度的函数重新组合生成一个新的函数 函数组合并没有减少洋葱代码,只是封装了洋葱代码 函数组合执行顺序从右到左 满足结合律既可以把g和h组合 还可以 ...

  10. JS数据结构与算法-数组结构

    数组结构 几乎所有的编程语言都原生支持数组类型,因为数组是最简单的内存数据结构. 数组通常情况下用于存储一系列同一种数据类型的值. 但在JavaScript里,也可以在数组中保存不同类型的值. 但我们 ...