一、并查集概念

  • 并查集是一种树形的数据结构,顾名思义,它用于处理一些不交集的合并及查询问题。 它支持两种操作:

    • 查找(Find):确定某个元素处于哪个子集,单次操作时间复杂度 O(α(n)),即查询元素p和元素q是否属于同一组
    • 合并(Union):将两个子集合并成一个集合,单次操作时间复杂度 O(α(n)),即合并元素p和元素q所在的组
  • 以下是并查集的常用模板,需要熟练掌握。其中:
    • n 表示节点数
    • p 存储每个点的父节点,初始时每个点的父节点都是自己
    • size 只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
    • find(x) 函数用于查找 x 所在集合的祖宗节点
    • union(a, b) 函数用于合并 a 和 b 所在的集合

二、并查集模板

1、模板一

// 并查集类。需要维护一个数组和两个方法,find()和union()
class UnionFind {
constructor(n) {
this.arr = []
// 初始默认为每个人是独立圈子,则他的父级就是他自身
for (let i = 0; i < n; i++) {
this.arr[i] = i
}
} // 直到arr[x] === x,停止向上搜索
find(x) {
let arr = this.arr
while (arr[x] !== x) {
x = arr[x]
}
return arr[x]
} // 路径压缩
union(x, y) {
let xFather = this.find(x)
let yFather = this.find(y)
if (xFather !== yFather) {
this.arr[xFather] = yFather
}
}
}

2、模板二

class UnionFind {
constructor(size) {
this.fa = []
this.size = size
this.init()
}
// 初始化 每个元素的父节点为自身
init() {
for(let i = 0; i < this.size; i++) {
this.fa[i] = i
}
}
// 递归找到根节点,同时进行路径压缩
find(x) {
if(x === this.fa[x]) {
return x
}
this.fa[x] = this.find(this.fa[x])
return this.fa[x]
}
// 合并 x, y 直到各自的根节点, 其中一个的指向另一个
merge(x, y) {
let fx = this.find(x)
let fy = this.find(y)
if(fx !== fy) {
this.fa[fx] = fy
}
}
// 获取集合数量
getCount() {
let count = 0
for(let i = 0; i < this.size; i++) {
if(this.fa[i] === i) {
count++
}
}
return count
}
}

3、模板三

// 这个并查集使用了一种叫做路径压缩的优化策略,可以有效减少查找操作的时间复杂度
class UnionFind {
    constructor(n) {
        this.count = n;
        this.parent = [];
        this.rank = [];
        for (let i = 0; i < n; i++) {
            this.parent[i] = i;
            this.rank[i] = 1;
        }
    }     // 查找元素 p 所在的集合编号
    find(p) {
        if (p !== this.parent[p]) {
            this.parent[p] = this.find(this.parent[p]);
        }
        return this.parent[p];
    }     isConnected(p, q) {
        return this.find(p) === this.find(q);
    }     // 将元素 p 和元素 q 所在的集合合并
    unionElements(p, q) {
        const pRoot = this.find(p);
        const qRoot = this.find(q);
        if (pRoot === qRoot) {
            return;
        }
        if (this.rank[pRoot] < this.rank[qRoot]) {
            this.parent[pRoot] = qRoot;
        } else if (this.rank[qRoot] < this.rank[pRoot]) {
            this.parent[qRoot] = pRoot;
        } else {
            this.parent[pRoot] = qRoot;
            this.rank[qRoot] += 1;
        }
    }
}

三、力扣例题

四、PDF参考资料

百度网盘:https://pan.baidu.com/s/1FzPwQKEEoSeEWFX-7A104A?pwd=hcfr

数据结构与算法 -> 并查集的更多相关文章

  1. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  2. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  3. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  4. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  5. POJ1861 Network (Kruskal算法 +并查集)

    Network Description Andrew is working as system administrator and is planning to establish a new net ...

  6. [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树

    可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...

  7. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  8. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  9. 数据结构 之 并查集(Disjoint Set)

    一.并查集的概念:     首先,为了引出并查集,先介绍几个概念:     1.等价关系(Equivalent Relation)     自反性.对称性.传递性.     如果a和b存在等价关系,记 ...

  10. luoguP3367 [模板]并查集

    题目链接:https://www.luogu.org/problemnew/show/P3367 思路: 今天学了新算法——并查集,本题是简单的并查集题的模板. 核心思想是“递归+压缩路径”. 并查集 ...

随机推荐

  1. 前端框架Vue------>第二天学习(1)插槽

    欢迎加入刚建立的社区:http://t.csdn.cn/Q52km 加入社区的好处: 1.专栏更加明确.便于学习 2.覆盖的知识点更多.便于发散学习 3.大家共同学习进步 3.不定时的发现金红包(不多 ...

  2. 纯Vue实现网页日常任务清单小功能(数据存储在浏览器)

    任务清单可以极大提高我们的工作效率.哪些事情办了.哪些事情代办.哪些是紧急需要办的事情等等. 在组件化编码实战3的基础上进一步改进.将原先的数据保存的浏览器中.就可以做到关闭网页也不会丢失数据的情况 ...

  3. golang中的一些实用功能

    0.1.索引 https://waterflow.link/articles/1663921524839 通过使用一些通用代码来节省时间,而无需单独实现它们.以下是一些开发中经常会用到的函数实现的列表 ...

  4. 6.channels 配置websocket

      Django默认不支持websockey,需要Django支持的话需要安装第三方组件 django channels 是django支持websocket的一个模块.   1.安装 pip3 in ...

  5. 18.drf request及源码分析

    REST framework的 Request 类扩展了Django标准的 HttpRequest ,添加了对REST framework请求解析和身份验证的支持. 源代码片段: class Requ ...

  6. vue使用elementUI组件提交表单(带图片)到node后台

    1.方法一(图片与表单分开,请求2次) 1.1 前台代码 // elementUI表单 <el-form ref="form" class="forms" ...

  7. JS 学习笔记(一)常用的字符串去重方法

    要求:从输入框中输入一串字符,按回车后输出去重后的字符串 方法一: <body> <input type="text" id="input" ...

  8. Java开发学习(四十)----MyBatisPlus入门案例与简介

    一.入门案例 MybatisPlus(简称MP)是基于MyBatis框架基础上开发的增强型工具,旨在简化开发.提供效率. SpringBoot它能快速构建Spring开发环境用以整合其他技术,使用起来 ...

  9. Jmeter——请求响应内容乱码解决办法

    前段时间,换过一次设备,重新下载了Jmeter.有一次在编写脚本时,响应内容中的中文一直显示乱码. 遇到乱码不要慌,肯定是有办法来解决的.具体解决办法,可以参考之前的博文,Jmeter--BeanSh ...

  10. Flask框架:如何运用Ajax轮询动态绘图

    摘要:Ajax是异步JavaScript和XML可用于前后端交互. 本文分享自华为云社区<Flask框架:运用Ajax轮询动态绘图>,作者:LyShark. Ajax是异步JavaScri ...