比赛链接

A

题意

给 \(n\) 个正整数,找到三个数,使得他们的和为奇数,输出他们的下标。

题解

知识点:贪心。

找到三个奇数或者一个奇数两个偶数即可,其他情况无解。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; bool solve() {
int n;
cin >> n;
vector<int> v1, v2;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
if (x & 1) v1.push_back(i);
else v2.push_back(i);
}
if (v1.size() >= 3) {
cout << "YES" << '\n';
cout << v1[0] << ' ' << v1[1] << ' ' << v1[2] << '\n';
}
else if (v1.size() >= 1 && v2.size() >= 2) {
cout << "YES" << '\n';
cout << v1[0] << ' ' << v2[0] << ' ' << v2[1] << '\n';
}
else return false;
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}

B

题意

给 \(n\) 个正整数 \(a_i\) 。选择一个 \(k>1\) ,随后将 \(a_i\) 分成 \(k\) 个连续非空段,使得每段的和 \(b_i\) 的最大公约数 \(\gcd(b_1,\cdots,b_k)\) 最大。

题解

知识点:数论,贪心。

对于任意 \(k\) 的任意划分有答案 \(\gcd(b_1,\cdots,b_k)\) ,根据 \(\gcd(a,b) = \gcd(a+b,b)\) ,即 \(a\) 和 \(b\) 的最大公因数一定也是 \(a+b\) 的因子,那么 \(\gcd(b_1+b_2,b_3,\cdots,b_k) \geq \gcd(b_1,\cdots,b_k)\) ,所以任意两段合并代替合并前的两段不会让答案变差,因此最好的情况一定出现在只分为两段的情况。

因此,我们只要求出 \(\max_\limits{1\leq i \leq n-1}\gcd(a[1,i],a[i+1,n])\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; ll a[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
ll ans = 1;
for (int i = 1;i <= n - 1;i++) {
ans = max(ans, gcd(a[i], a[n] - a[i]));
}
cout << ans << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题有问题。

D

题意

有一个数字 \(n \in[1,10^9]\) ,告诉你 \(n\) 的二进制位 \(1\) 的个数 \(cnt\)。

随后可以执行不超过 \(30\) 次操作:选择一个 \(x\) ,使得 \(n\) 减去 \(x\) ,得到新的 \(n\) 的二进制位 \(1\) 的个数 \(cnt\) 。

最后,你需要猜出 \(n\) 是多少。

题解

知识点:位运算,枚举。

由于 \(n\) 最多会有 \(30\) 个 \(1\) ,我们可以探测每一位是否为 \(1\) 。

具体的说,我们探测第 \(i\) 位是否为 \(1\) ,可以减去 \(2^{i-1}\) 。如果这位是 \(1\) ,那么新的个数 \(cnt' = cnt-1<cnt\) ,否则一定有 \(cnt'\geq cnt\) 。但是,这个结论的前提是,我们是对原本的 \(n\) 做减法。考虑到操作会改变 \(n\) ,因此我们第 \(i-1\) 位探测完后,第 \(i\) 位的探测减去的应该是 \(2^{i-1} - 2^{i-2}\) ,这样可以抵消上一次操作,等效于对原来的 \(n\) 减去 \(2^{i-1}\) 。

要注意的是,如果减的数超过 \(n\) 那么也会错,即我们不能探测超过 \(n\) 最高位二进制的数。为了防止超出,我们可以记录探测为 \(1\) 的位数 \(tot\) ,如果 \(tot = cnt\) 那么可以立刻停止,因为此时答案已经满足要求了。

时间复杂度 \(O(1)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; int query(int x) {
int cnt;
cout << "- " << x << endl;
cin >> cnt;
return cnt;
} void answer(int n) {
cout << "! " << n << endl;
} bool solve() {
int cnt;
cin >> cnt;
int ans = 0, tot = 0;
if (query(1) < cnt) ans += 1, tot++;
for (int i = 1;i < 30 && tot < cnt;i++) {
if (query((1 << i) - (1 << (i - 1))) < cnt) ans += 1 << i, tot++;
}
answer(ans);
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

E

题意

给定一个区间 \([L,R]\) ,求 \(\gcd(i,j)\) 的种类,其中 \(i,j\in[L,R]\) 。

题解

知识点:整除分块。

设 \(\gcd(i,j) = d\) 我们考虑讨论 \(d\) 的大小:

  1. 当 \(\left\lfloor \dfrac{R}{2} \right\rfloor + 1 \leq d\) ,那么对于最小的倍数 \(2d\) ,也一定有 \(2d > R\) , 所以不存在 \([L,R]\) 的数满足这个范围的 \(d\) 。
  2. 当 \(L \leq d \leq \left\lfloor \dfrac{R}{2} \right\rfloor\) ,我们一定可以构造 \(\gcd(d,2d) = d\) ,其中 \(L \leq d < 2d \leq R\) 。
  3. 当 \(d \leq L - 1\) ,我们尝试构造大于等于 \(L\) 的最小的一组数 \(L \leq d \cdot \left\lceil \dfrac{L}{d} \right\rceil < d \cdot \left( \left\lceil \dfrac{L}{d} \right\rceil +1\right)\) ,这两个数满足 \(d \cdot \left\lceil \dfrac{L}{d} \right\rceil < d \cdot \left( \left\lceil \dfrac{L}{d} \right\rceil +1\right) \leq R\) ,则 \(d\) 是合法的,否则一定不合法。

对于前两类我们可以轻易求出个数,但第三类,显然我们不可能一个一个枚举 \(d\in[1,L-1]\) 。

实际上,我们发现会存在许多连续区间的 \(d\) ,其 \(\left\lceil \dfrac{L}{d} \right\rceil\) 的值是一样的,大约有 \(\sqrt L\) 个。假设 \([l,r]\) 区间的 \(d\) 满足 \(\left\lceil \dfrac{L}{d} \right\rceil = \left\lceil \dfrac{L}{l} \right\rceil\) ,那么若 \(d\) 满足 \(l \leq d \leq \min \left(r,\left\lfloor \dfrac{R}{\left\lceil \dfrac{L}{d} \right\rceil + 1} \right\rfloor \right)\) 则构造的数不会超 \(R\) ,是合法的。

那么这个问题现在就变成一个整除分块问题,为了方便,我们把取上整都转化为取下整,即 \(\left\lceil \dfrac{L}{d} \right\rceil = \left\lfloor \dfrac{L-1}{d} \right\rfloor + 1\) 。已知左端点 \(l\) 和 \(\left\lfloor \dfrac{L-1}{l} \right\rceil = k\) ,求最大的右端点 \(r\) 满足 \(\left\lfloor \dfrac{L-1}{i} \right\rfloor = k,i \in [l,r]\) 。为了在 \(l\) 的基础上将 \(i\) 向上逼近,我们将整除等式转化一个不等式 \(i \cdot k \leq L-1\) , \(r\) 即为 \(i\) 的最大值 \(\left\lfloor \dfrac{L-1}{k} \right\rfloor\) 。

现在我们就可以从 \(d = 1\) 开始枚举,每次可以枚举一个区间。

时间复杂度 \(O(\sqrt{L})\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; bool solve() {
ll L, R;
cin >> L >> R;
ll ans = max(0LL, R / 2 - L + 1);
for (int l = 1, r;l < L;l = r + 1) {
int k = (L - 1) / l;
r = (L - 1) / k;
ans += max(0LL, min((ll)r, R / (k + 2)) - l + 1);
}
cout << ans << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

Codeforces Round #846 (Div. 2) A-E的更多相关文章

  1. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  2. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  3. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  6. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  7. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  8. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

  9. Codeforces Round #268 (Div. 2) ABCD

    CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...

  10. 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts

    题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...

随机推荐

  1. dp优化 | 各种dp优化方式例题精选

    前言 本文选题都较为基础,仅用于展示优化方式,如果是要找题单而不是看基础概念,请忽略本文. 本文包含一些常见的dp优化("√"表示下文会进行展示,没"√"表示暂 ...

  2. 鹅长微服务发现与治理巨作PolarisMesh实践-上

    @ 目录 概述 定义 核心功能 组件和生态 特色亮点 解决哪些问题 官方性能数据 架构原理 资源模型 服务治理 基本原理 服务注册 服务发现 安装 部署架构 集群安装 SpringCloud应用接入 ...

  3. CSS选择器大全48式

    00.CSS选择器 CSS的选择器分类如下图,其中最最常用的就是基础选择器中的三种:元素选择器.类选择器.id选择器.伪类选择器就是元素的不同行为.状态,或逻辑.然后不同的选择器组合,基于不同的组合关 ...

  4. 关于.Net和Java的看法-一个小实习生经历

    目录 背景 带着疑惑 生活中的迷茫 开始实训 实习 再看java 总结 背景 笔者是一个专科院校的一名普通学生,目前就职于某三线城市的WEB方面.Net开发实习生,在找实习期间和就业期间的一些看法,发 ...

  5. fltp备份文件后统计验证

    上一篇(https://www.cnblogs.com/jying/p/16805821.html)记录了自己在centos使用lftp备份文件的过程,本篇记录自己对备份后的文件与源文件目录的对比统计 ...

  6. 刚哥谈架构(八)- 为你的应用选择合适的API

    前言: 架构师的主要活动是做出正确的技术决策.选择合适的API是一项重要的技术决策.那么今天就看看API的选择问题. 应用程序编程接口(API)是一种计算接口,它定义了多个软件中介之间的交互.它定义了 ...

  7. 第2-3-6章 打包批量下载附件的接口开发-文件存储服务系统-nginx/fastDFS/minio/阿里云oss/七牛云oss

    目录 5.6 接口开发-根据文件id打包下载附件 5.6.1 接口文档 5.6.2 代码实现 5.6.3 接口测试 5.7 接口开发-根据业务类型/业务id打包下载 5.7.1 接口文档 5.7.2 ...

  8. i春秋Not Found

    点开网页,显示404,告诉我们404.php的存在,我们先试试404.php,打开是haha四个字母,源码和抓包都没看到什么,然后其抓包,也没什么,无功,返回原网页,抓包,没发现什么的感觉,go一遍, ...

  9. 春秋云境 CVE-2022-24663复现

    靶标介绍: 远程代码执行漏洞,任何订阅者都可以利用该漏洞发送带有"短代码"参数设置为 PHP Everywhere 的请求,并在站点上执行任意 PHP 代码.P.S. 存在常见用户 ...

  10. windows10 设置VS一类的不提供兼容性视图的程序默认管理员启动

    选择兼容性疑难解答: 选择疑难解答程序: 下一步后保存即可.