显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案。

用动态开点的方式建立线段树,注意离散化。

  1 #include<bits/stdc++.h>
2 using namespace std;
3 const int N = 1e5 + 10;
4 struct node {
5 int lc, rc, dat, pos;//dat记录最多的物品的次数,pos记录位置
6 }tr[N * 20 * 4];
7 int head[N], to[N << 1], nxt[N << 1], tot;
8 int n, m, num, cnt, t, ans[N];
9 int d[N], st[N][20], rt[N], X[N], Y[N], Z[N], val[N];
10 inline int read() {
11 int x = 0,f = 1;char ch = getchar();
12 while (ch<'0' || ch>'9') { if(ch == '-') f = -1;ch = getchar(); }
13 while (ch >= '0'&&ch <= '9') x = x * 10 + ch - '0',ch = getchar();
14 return x * f;
15 }
16 void add(int x, int y) {
17 nxt[++tot] = head[x];
18 head[x] = tot;
19 to[tot] = y;
20 }
21
22 void dfs(int u, int f) {
23 for (int i = head[u]; i; i = nxt[i]) {
24 int v = to[i];
25 if (d[v]) continue;
26 d[v] = d[u] + 1;
27 st[v][0] = u;
28 for (int j = 1; j <= t; j++)
29 st[v][j] = st[st[v][j-1]][j-1];
30 dfs(v, u);
31 }
32 }
33
34 int lca(int x, int y) {
35 if (d[x] > d[y]) swap(x, y);
36 for (int i = t; i >= 0; i--)
37 if (d[st[y][i]] >= d[x]) y = st[y][i];
38 if (x == y) return x;
39 for (int i = t; i >= 0; i--)
40 if (st[x][i] != st[y][i]) x = st[x][i], y = st[y][i];
41 return st[x][0];
42 }
43
44 void insert(int p, int l, int r, int val, int k) {
45 if (l == r) {
46 tr[p].dat += k;
47 tr[p].pos = tr[p].dat ? l : 0;
48 return ;
49 }
50 int mid = (l + r) >> 1;
51 if(val <= mid) {
52 if (!tr[p].lc) tr[p].lc = ++num;//动态开点
53 insert(tr[p].lc, l, mid, val, k);
54 }
55 else {
56 if (!tr[p].rc) tr[p].rc = ++num;
57 insert(tr[p].rc, mid + 1, r, val, k);
58 }
59 tr[p].dat = max(tr[tr[p].lc].dat, tr[tr[p].rc].dat);
60 tr[p].pos = tr[tr[p].lc].dat >= tr[tr[p].rc].dat ? tr[tr[p].lc].pos : tr[tr[p].rc].pos;
61 }
62
63 int merge(int p, int q, int l, int r) {//线段树合并
64 if (!p || !q) return p + q;
65 if (l == r) {
66 tr[p].dat += tr[q].dat;
67 tr[p].pos = tr[p].dat ? l : 0;
68 return p;
69 }
70 int mid = (l + r) >> 1;
71 tr[p].lc = merge(tr[p].lc, tr[q].lc, l, mid);
72 tr[p].rc = merge(tr[p].rc, tr[q].rc, mid + 1, r);
73 tr[p].dat = max(tr[tr[p].lc].dat, tr[tr[p].rc].dat);
74 tr[p].pos = tr[tr[p].lc].dat >= tr[tr[p].rc].dat ? tr[tr[p].lc].pos : tr[tr[p].rc].pos;
75 return p;
76 }
77
78 void solve(int x) {
79 for (int i = head[x]; i; i = nxt[i]) {
80 int y = to[i];
81 if (d[y] <= d[x]) continue;
82 solve(y);
83 rt[x] = merge(rt[x], rt[y], 1, cnt);
84 }
85 ans[x] = tr[rt[x]].pos;
86 }
87
88 int main() {
89 n = read(); m = read();
90 t = log2(n) + 1;
91 for (int i = 1; i < n; i++) {
92 int x = read(), y = read();
93 add(x, y), add(y, x);
94 }
95 d[1] = 1, dfs(1,0);
96 for (int i = 1; i <= n; i++) rt[i] = ++num;
97 for (int i = 1; i <= m; i++) {
98 X[i] = read(); Y[i] = read(); Z[i] = read();
99 val[i] = Z[i];
100 }
101 sort(val + 1, val + m + 1);//离散化
102 cnt = unique(val + 1, val + m + 1) - val - 1;
103 for (int i = 1; i <= m; i++) {
104 int x = X[i], y = Y[i];
105 int z = lower_bound(val + 1, val + cnt + 1, Z[i]) - val;
106 int p = lca(x, y);
107 //树上差分
108 insert(rt[x], 1, cnt, z, 1);
109 insert(rt[y], 1, cnt, z, 1);
110 insert(rt[p], 1, cnt, z, -1);
111 if (st[p][0]) insert(rt[st[p][0]], 1, cnt, z, -1);
112 }
113 solve(1);
114 for (int i = 1; i <= n; i++) printf("%d\n", val[ans[i]]);
115 return 0;
116 }

P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并 (树上差分+线段树合并)的更多相关文章

  1. 洛谷 P4556 [Vani有约会]雨天的尾巴 解题报告

    P4556 [Vani有约会]雨天的尾巴 题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒 ...

  2. P4556 [Vani有约会]雨天的尾巴(线段树合并+lca)

    P4556 [Vani有约会]雨天的尾巴 每个操作拆成4个进行树上差分,动态开点线段树维护每个点的操作. 离线处理完向上合并就好了 luogu倍增lca被卡了5分.....于是用rmq维护.... 常 ...

  3. P4556 [Vani有约会]雨天的尾巴 (线段树合并)

    P4556 [Vani有约会]雨天的尾巴 题意: 首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋 ...

  4. [题解] P4556 [Vani有约会]雨天的尾巴

    [题解] P4556 [Vani有约会]雨天的尾巴 ·题目大意 给定一棵树,有m次修改操作,每次修改 \(( x\) \(y\) \(z )\) 表示 \((x,y)\) 之间的路径上数值 \(z\) ...

  5. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  6. P4556 [Vani有约会]雨天的尾巴

    目录 思路 优化 过程中的问题/疑问 错误 代码 思路 每个节点维护一课线段树(当然是动态开点) 线段树的作用是统计这个节点有多少种粮食型号,以及最多的粮食型号 然后树上差分,u和v点 +1,lca( ...

  7. 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)

    传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...

  8. 洛咕 P4556 [Vani有约会]雨天的尾巴

    终于把考试题清完了...又复活了... 树上差分,合并用线段树合并,但是空间会炸. 某大佬:lca和fa[lca]减得时候一定已经存在这个节点了,所以放进vector里,合并完之后减掉就好了... 玄 ...

  9. P4556 [Vani有约会]雨天的尾巴(线段树合并)

    传送门 一道线段树合并 首先不难看出树上差分 我们把每一次修改拆成四个,在\(u,v\)分别放上一个,在\(lca\)和\(fa[lca]\)各减去一个,那么只要统计一下子树里的总数即可 然而问题就在 ...

随机推荐

  1. md文档使用小技巧

    简介 在日常写readme文档中,可能会遇到一些小问题,此处记录一下md文档编写过程中的一些小技巧. 插入图片 在md文档中插入图片,目前有三种方式,本地导入.网络导入.base64导入. 本地导入 ...

  2. 彻底弄清楚session,cookie,sessionStorage,localStorage的区别及应用场景(面试向)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_94 客户端状态保持是一个老生常谈的问题了,归根结底追踪浏览器的用户身份及其相关数据无非就是以下四种方式:session,cooki ...

  3. 自动提交本地git仓库脚本

    #! /bin/bash git_user_name=`git config user.name` git_user_mail=`git config user.email` branch_name= ...

  4. 使用 Vagrant 在 VirtualBox 安装 Linux 虚拟机

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 目录 1. 导入 2.工具介绍 3.通过Vagrant为VirtualBox安装CentOS 7 4.总结 文章推荐: 关 ...

  5. [C#]使用 AltCover 获得代码覆盖率 - E2E Test 和 Unit Test

    背景 在 CI/CD 流程当中,测试是 CI 中很重要的部分.跟开发人员关系最大的就是单元测试,单元测试编写完成之后,我们可以使用 IDE 或者 dot cover 等工具获得单元测试对于业务代码的覆 ...

  6. 自定义spring boot starter 初尝试

    自定义简单spring boot starter 步骤 从几篇博客中了解了如何自定义starter,大概分为以下几个步骤: 1 引入相关依赖: 2 生成属性配置类: 3 生成核心服务类: 4 生成自动 ...

  7. Spring源码-xml解析

    Spring使用SAX解析xml.SAX的全称是Simple APIs for XML,也即XML简单应用程序接口.与DOM不同,SAX提供的访问模式是一种顺序模式,这是一种快速读写XML数据的方式. ...

  8. Think PHP 完整的带富文本格式以及图片上传,并且在页面上分页展示

    Think php6.0官网网址:序言 · ThinkPHP6.0完全开发手册 · 看云 (kancloud.cn) 下面是基础配置 第一步:创建TP框架,命名为tp composer create- ...

  9. NSK DD马达 直驱电机 RS232通信连接

    NSK DD马达 通信连接 通信测试平台 驱动器:NSK EDC系列 电机:NSK PS1006KN系列 电机线:UVW对应红白黑. 电源线:Main和Ctrl电路220V交流电供电即可. 测试软件: ...

  10. DataGridVIew控件绑定数据之后的,增、插、删操作

    最开始没有绑定数据,很快就实现了增.插.删操作,可是绑定数据之后,进行这些操作就会报错. 网上对这方面的资料比较少,自己摸索着找到了解决方法,也就是直接对绑定的数据进行操作,这里以DataTable为 ...