JDK7新特性之fork/join框架
The fork/join framework is an implementation of the ExecutorService
interface that helps you take advantage of multiple processors. It is designed for work that can be broken into smaller pieces recursively. The goal is to use all the available processing power to enhance the performance of your application.
简单翻一下主题思想:fork/join框架是ExecutorService
接口的一个实现,它的目的是解决线程的派生问题。这个框架的本质是将一个任务分解成多个子任务,每个子任务用单独的线程去处理。这里用到了递归的思想。
As with any ExecutorService
implementation, the fork/join framework distributes tasks to worker threads in a thread pool. The fork/join framework is distinct because it uses a work-stealing algorithm. Worker threads that run out of things to do can steal tasks from other threads that are still busy.
The center of the fork/join framework is the ForkJoinPool
class, an extension of the AbstractExecutorService
class. ForkJoinPool
implements the core work-stealing algorithm and can execute ForkJoinTask
processes.
Basic Use
The first step for using the fork/join framework is to write code that performs a segment of the work. Your code should look similar to the following pseudocode:
if (my portion of the work is small enough)
do the work directly
else
split my work into two pieces
invoke the two pieces and wait for the results
Wrap this code in a ForkJoinTask
subclass, typically using one of its more specialized types, either RecursiveTask
(which can return a result) or RecursiveAction
.
After your ForkJoinTask
subclass is ready, create the object that represents all the work to be done and pass it to the invoke()
method of a ForkJoinPool
instance.
Blurring for Clarity
To help you understand how the fork/join framework works, consider the following example. Suppose that you want to blur an image. The original source image is represented by an array of integers, where each integer contains the color values for a single pixel. The blurred destination image is also represented by an integer array with the same size as the source.
Performing the blur is accomplished by working through the source array one pixel at a time. Each pixel is averaged with its surrounding pixels (the red, green, and blue components are averaged), and the result is placed in the destination array. Since an image is a large array, this process can take a long time. You can take advantage of concurrent processing on multiprocessor systems by implementing the algorithm using the fork/join framework. Here is one possible implementation:
public class ForkBlur extends RecursiveAction {
private int[] mSource;
private int mStart;
private int mLength;
private int[] mDestination; // Processing window size; should be odd.
private int mBlurWidth = 15; public ForkBlur(int[] src, int start, int length, int[] dst) {
mSource = src;
mStart = start;
mLength = length;
mDestination = dst;
} protected void computeDirectly() {
int sidePixels = (mBlurWidth - 1) / 2;
for (int index = mStart; index < mStart + mLength; index++) {
// Calculate average.
float rt = 0, gt = 0, bt = 0;
for (int mi = -sidePixels; mi <= sidePixels; mi++) {
int mindex = Math.min(Math.max(mi + index, 0),
mSource.length - 1);
int pixel = mSource[mindex];
rt += (float)((pixel & 0x00ff0000) >> 16)
/ mBlurWidth;
gt += (float)((pixel & 0x0000ff00) >> 8)
/ mBlurWidth;
bt += (float)((pixel & 0x000000ff) >> 0)
/ mBlurWidth;
} // Reassemble destination pixel.
int dpixel = (0xff000000 ) |
(((int)rt) << 16) |
(((int)gt) << 8) |
(((int)bt) << 0);
mDestination[index] = dpixel;
}
} ...
Now you implement the abstract compute()
method, which either performs the blur directly or splits it into two smaller tasks. A simple array length threshold helps determine whether the work is performed or split.
protected static int sThreshold = 100000; protected void compute() {
if (mLength < sThreshold) {
computeDirectly();
return;
} int split = mLength / 2; invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
new ForkBlur(mSource, mStart + split, mLength - split,
mDestination));
}
If the previous methods are in a subclass of the RecursiveAction
class, then setting up the task to run in a ForkJoinPool
is straightforward, and involves the following steps:
Create a task that represents all of the work to be done.
// source image pixels are in src
// destination image pixels are in dst
ForkBlur fb = new ForkBlur(src, 0, src.length, dst);Create the
ForkJoinPool
that will run the task.ForkJoinPool pool = new ForkJoinPool();
Run the task.
pool.invoke(fb);
For the full source code, including some extra code that creates the destination image file, see the
example.ForkBlur
Standard Implementations
Besides using the fork/join framework to implement custom algorithms for tasks to be performed concurrently on a multiprocessor system (such as the ForkBlur.java
example in the previous section), there are some generally useful features in Java SE which are already implemented using the fork/join framework. One such implementation, introduced in Java SE 8, is used by the java.util.Arrays
class for its parallelSort()
methods. These methods are similar to sort()
, but leverage concurrency via the fork/join framework. Parallel sorting of large arrays is faster than sequential sorting when run on multiprocessor systems. However, how exactly the fork/join framework is leveraged by these methods is outside the scope of the Java Tutorials. For this information, see the Java API documentation.
Another implementation of the fork/join framework is used by methods in the java.util.streams
package, which is part of Project Lambda scheduled for the Java SE 8 release. For more information, see the Lambda Expressions section.
JDK7新特性之fork/join框架的更多相关文章
- Java并发——Fork/Join框架
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...
- Java并发——Fork/Join框架与ForkJoinPool
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...
- Java 7 Fork/Join 框架
在 Java7引入的诸多新特性中,Fork/Join 框架无疑是重要的一项.JSR166旨在标准化一个实质上可扩展的框架,以将并行计算的通用工具类组织成一个类似java.util中Collection ...
- 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验
JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...
- Fork/Join 框架-设计与实现(翻译自论文《A Java Fork/Join Framework》原作者 Doug Lea)
作者简介 Dong Lea任职于纽约州立大学奥斯威戈分校(State University of New York at Oswego),他发布了第一个广泛使用的java collections框架实 ...
- 【转】Fork/Join框架测试
Fork/Join框架介绍 下面使用该框架计算0-50000000000的和,并比较普通计算方法.Fork/Join框架.Java8新特性三种计算方式的计算时间: import java.time.D ...
- 013-多线程-基础-Fork/Join框架、parallelStream讲解
一.概述 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 它同ThreadPoolExecut ...
- ☕【Java技术指南】「并发编程专题」Fork/Join框架基本使用和原理探究(基础篇)
前提概述 Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行. 我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一 ...
- JAVA中的Fork/Join框架
看了下Java Tutorials中的fork/join章节,整理下. 什么是fork/join框架 fork/join框架是ExecutorService接口的一个实现,可以帮助开发人员充分利用多核 ...
随机推荐
- zhuan: ubuntu 安装 apache2
安装 用 sudo apt-get install apache2 sudo /etc/init.d/apache2 restart 如果发现错误: 以下from:http://cache.baid ...
- LocalStorage 本地存储
首先自然是检测浏览器是否支持本地存储.在HTML5中,本地存储是一个window的属性,包括localStorage和sessionStorage,从名字应该可以很清楚的辨认二者的区别,前者是一直存在 ...
- CSS3新的字体尺寸单位rem
CSS3引入新的字体尺寸单位 rem ,可以简单记忆为root rm. CSS3的出现,他同时引进了一些新的单位,包括我们今天所说的rem.在W3C官网上 是这样描述rem的——“font size ...
- VB断点大全
MultiByteToWideChar, ANSI字符串转换成Unicode字符串WideCharToMultiByte, Unicode字符串转换成ANSI字符串 //--------------- ...
- spoj 362
规律还是比较好找的 大数除法 #include <cstdio> #include <cstring> int len,a[1000],q; int cc[] = {0,1, ...
- 《head first java 》读书笔记
Updated 2014/03/26 P300-P402 Updated 2014/03/25 P213-300 Updated 2014/03/20 P0-P213 对象本身已知的事物被称为: 实例 ...
- Flask, Tornado, GEvent, 以及它们的结合的性能比较
Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...
- the structure of the project (MVC)
HTML <--- JSP <---- JS <---- Java controller <---- DAO <---- Database The JSP Model 2 ...
- POJ3122Pie(二分)
http://poj.org/problem?id=3122 题意 :这个题最主要的就是审题要仔细,翻译不要漏句子.题目讲的是我要过生日,要给好友分馅饼(还有自己也想要一块),怕引起不公,所以每个人大 ...
- CSU1327+贪心+模拟
题意简单,中文题目 方法:对于一个数 从左往右找相同的数 ,有就改变靠右的,同时把该数的右边全置0 注意!!!!n<0!!! /* */ #include<algorithm> #i ...