The fork/join framework is an implementation of the ExecutorService interface that helps you take advantage of multiple processors. It is designed for work that can be broken into smaller pieces recursively. The goal is to use all the available processing power to enhance the performance of your application.

简单翻一下主题思想:fork/join框架是ExecutorService接口的一个实现,它的目的是解决线程的派生问题。这个框架的本质是将一个任务分解成多个子任务,每个子任务用单独的线程去处理。这里用到了递归的思想。

As with any ExecutorService implementation, the fork/join framework distributes tasks to worker threads in a thread pool. The fork/join framework is distinct because it uses a work-stealing algorithm. Worker threads that run out of things to do can steal tasks from other threads that are still busy.

The center of the fork/join framework is the ForkJoinPool class, an extension of the AbstractExecutorService class. ForkJoinPool implements the core work-stealing algorithm and can execute ForkJoinTask processes.

Basic Use

The first step for using the fork/join framework is to write code that performs a segment of the work. Your code should look similar to the following pseudocode:

if (my portion of the work is small enough)
do the work directly
else
split my work into two pieces
invoke the two pieces and wait for the results

Wrap this code in a ForkJoinTask subclass, typically using one of its more specialized types, either RecursiveTask (which can return a result) or RecursiveAction.

After your ForkJoinTask subclass is ready, create the object that represents all the work to be done and pass it to the invoke() method of a ForkJoinPool instance.

Blurring for Clarity

To help you understand how the fork/join framework works, consider the following example. Suppose that you want to blur an image. The original source image is represented by an array of integers, where each integer contains the color values for a single pixel. The blurred destination image is also represented by an integer array with the same size as the source.

Performing the blur is accomplished by working through the source array one pixel at a time. Each pixel is averaged with its surrounding pixels (the red, green, and blue components are averaged), and the result is placed in the destination array. Since an image is a large array, this process can take a long time. You can take advantage of concurrent processing on multiprocessor systems by implementing the algorithm using the fork/join framework. Here is one possible implementation:

public class ForkBlur extends RecursiveAction {
private int[] mSource;
private int mStart;
private int mLength;
private int[] mDestination; // Processing window size; should be odd.
private int mBlurWidth = 15; public ForkBlur(int[] src, int start, int length, int[] dst) {
mSource = src;
mStart = start;
mLength = length;
mDestination = dst;
} protected void computeDirectly() {
int sidePixels = (mBlurWidth - 1) / 2;
for (int index = mStart; index < mStart + mLength; index++) {
// Calculate average.
float rt = 0, gt = 0, bt = 0;
for (int mi = -sidePixels; mi <= sidePixels; mi++) {
int mindex = Math.min(Math.max(mi + index, 0),
mSource.length - 1);
int pixel = mSource[mindex];
rt += (float)((pixel & 0x00ff0000) >> 16)
/ mBlurWidth;
gt += (float)((pixel & 0x0000ff00) >> 8)
/ mBlurWidth;
bt += (float)((pixel & 0x000000ff) >> 0)
/ mBlurWidth;
} // Reassemble destination pixel.
int dpixel = (0xff000000 ) |
(((int)rt) << 16) |
(((int)gt) << 8) |
(((int)bt) << 0);
mDestination[index] = dpixel;
}
} ...

Now you implement the abstract compute() method, which either performs the blur directly or splits it into two smaller tasks. A simple array length threshold helps determine whether the work is performed or split.

protected static int sThreshold = 100000;

protected void compute() {
if (mLength < sThreshold) {
computeDirectly();
return;
} int split = mLength / 2; invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
new ForkBlur(mSource, mStart + split, mLength - split,
mDestination));
}

If the previous methods are in a subclass of the RecursiveAction class, then setting up the task to run in a ForkJoinPool is straightforward, and involves the following steps:

  1. Create a task that represents all of the work to be done.

    // source image pixels are in src
    // destination image pixels are in dst
    ForkBlur fb = new ForkBlur(src, 0, src.length, dst);
  2. Create the ForkJoinPool that will run the task.

    ForkJoinPool pool = new ForkJoinPool();
  3. Run the task.

    pool.invoke(fb);

For the full source code, including some extra code that creates the destination image file, see the ForkBlur example.

Standard Implementations

Besides using the fork/join framework to implement custom algorithms for tasks to be performed concurrently on a multiprocessor system (such as the ForkBlur.java example in the previous section), there are some generally useful features in Java SE which are already implemented using the fork/join framework. One such implementation, introduced in Java SE 8, is used by the java.util.Arrays class for its parallelSort() methods. These methods are similar to sort(), but leverage concurrency via the fork/join framework. Parallel sorting of large arrays is faster than sequential sorting when run on multiprocessor systems. However, how exactly the fork/join framework is leveraged by these methods is outside the scope of the Java Tutorials. For this information, see the Java API documentation.

Another implementation of the fork/join framework is used by methods in the java.util.streams package, which is part of Project Lambda scheduled for the Java SE 8 release. For more information, see the Lambda Expressions section.

JDK7新特性之fork/join框架的更多相关文章

  1. Java并发——Fork/Join框架

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...

  2. Java并发——Fork/Join框架与ForkJoinPool

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...

  3. Java 7 Fork/Join 框架

    在 Java7引入的诸多新特性中,Fork/Join 框架无疑是重要的一项.JSR166旨在标准化一个实质上可扩展的框架,以将并行计算的通用工具类组织成一个类似java.util中Collection ...

  4. 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验

    JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...

  5. Fork/Join 框架-设计与实现(翻译自论文《A Java Fork/Join Framework》原作者 Doug Lea)

    作者简介 Dong Lea任职于纽约州立大学奥斯威戈分校(State University of New York at Oswego),他发布了第一个广泛使用的java collections框架实 ...

  6. 【转】Fork/Join框架测试

    Fork/Join框架介绍 下面使用该框架计算0-50000000000的和,并比较普通计算方法.Fork/Join框架.Java8新特性三种计算方式的计算时间: import java.time.D ...

  7. 013-多线程-基础-Fork/Join框架、parallelStream讲解

    一.概述 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 它同ThreadPoolExecut ...

  8. ☕【Java技术指南】「并发编程专题」Fork/Join框架基本使用和原理探究(基础篇)

    前提概述 Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行. 我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一 ...

  9. JAVA中的Fork/Join框架

    看了下Java Tutorials中的fork/join章节,整理下. 什么是fork/join框架 fork/join框架是ExecutorService接口的一个实现,可以帮助开发人员充分利用多核 ...

随机推荐

  1. (转载)linux下tar.gz、tar、bz2、zip等解压缩、压缩命令小结

    linux下tar.gz.tar.bz2.zip等解压缩.压缩命令小结 bz2 tgz z等众多压缩文件的压缩与解压方法,需要的朋友可以参考下 1) Linux下最常用的打包程序就是tar了,使用ta ...

  2. Mvc生命周期深度剖析

    客户端发送请求->IIS, UrlRouting模块对比URL, 默认如果该URL能对应到实体文件则退出MVC管道把控制权交还给IIS. 如果RegisterRoutes中的路由规则对比成功默认 ...

  3. JS 实现取整(二)

    1.直接丢弃小数部分,保留整数部分 a:parseInt(1.5555) b: 0|1.5555 2.向上取整 a: Math.ceil(1.5555) b: (1.5555+0.5).toFixed ...

  4. SVN备份教程(二)

    上次的博文中SVN备份教程(一)我们简单介绍了一下SVN备份是如何操作的,今天我们接着将上次的问题进行优化. 1.问题回顾 在讲之前,我们先来将上次的问题重申一下.之前的SVN备份存在的问题很简单,每 ...

  5. (转载)Unity3d摄像机Camera参数详解

    1. Clear Flags:清除标记.决定屏幕的哪部分将被清除.一般用户使用对台摄像机来描绘不同游戏对象的情况,有3中模式选择: Skybox:天空盒.默认模式.在屏幕中的空白部分将显示当前摄像机的 ...

  6. json分别算出元素的个数和最多的元素

    个数: var str = 'aaafsdsaaasasasasaa'; var json = {}; for (var i = 0; i < str.length; i++) { if(!js ...

  7. jq获取元素到底部的距离

    // var wh = $(window).height(),//是文档窗口高度 // ot = $("#icoimg").offset().top,//是标签距离顶部高度 // ...

  8. hibernate hql 大全

    Hibernate配备了一种非常强大的查询语言,这种语言看上去很像SQL.但是不要被语法结构 上的相似所迷惑,HQL是非常有意识的被设计为完全面向对象的查询,它可以理解如继承.多态 和关联之类的概念. ...

  9. Window Event 2008

    https://support.microsoft.com/en-us/kb/947226

  10. SDUT 2527 斗地主

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2527 思路 :以前的结训比赛,当时不会做,比完 ...