JDK7新特性之fork/join框架
The fork/join framework is an implementation of the ExecutorService interface that helps you take advantage of multiple processors. It is designed for work that can be broken into smaller pieces recursively. The goal is to use all the available processing power to enhance the performance of your application.
简单翻一下主题思想:fork/join框架是ExecutorService接口的一个实现,它的目的是解决线程的派生问题。这个框架的本质是将一个任务分解成多个子任务,每个子任务用单独的线程去处理。这里用到了递归的思想。
As with any ExecutorService implementation, the fork/join framework distributes tasks to worker threads in a thread pool. The fork/join framework is distinct because it uses a work-stealing algorithm. Worker threads that run out of things to do can steal tasks from other threads that are still busy.
The center of the fork/join framework is the ForkJoinPool class, an extension of the AbstractExecutorService class. ForkJoinPool implements the core work-stealing algorithm and can execute ForkJoinTask processes.
Basic Use
The first step for using the fork/join framework is to write code that performs a segment of the work. Your code should look similar to the following pseudocode:
if (my portion of the work is small enough)
do the work directly
else
split my work into two pieces
invoke the two pieces and wait for the results
Wrap this code in a ForkJoinTask subclass, typically using one of its more specialized types, either RecursiveTask (which can return a result) or RecursiveAction.
After your ForkJoinTask subclass is ready, create the object that represents all the work to be done and pass it to the invoke() method of a ForkJoinPool instance.
Blurring for Clarity
To help you understand how the fork/join framework works, consider the following example. Suppose that you want to blur an image. The original source image is represented by an array of integers, where each integer contains the color values for a single pixel. The blurred destination image is also represented by an integer array with the same size as the source.
Performing the blur is accomplished by working through the source array one pixel at a time. Each pixel is averaged with its surrounding pixels (the red, green, and blue components are averaged), and the result is placed in the destination array. Since an image is a large array, this process can take a long time. You can take advantage of concurrent processing on multiprocessor systems by implementing the algorithm using the fork/join framework. Here is one possible implementation:
public class ForkBlur extends RecursiveAction {
private int[] mSource;
private int mStart;
private int mLength;
private int[] mDestination;
// Processing window size; should be odd.
private int mBlurWidth = 15;
public ForkBlur(int[] src, int start, int length, int[] dst) {
mSource = src;
mStart = start;
mLength = length;
mDestination = dst;
}
protected void computeDirectly() {
int sidePixels = (mBlurWidth - 1) / 2;
for (int index = mStart; index < mStart + mLength; index++) {
// Calculate average.
float rt = 0, gt = 0, bt = 0;
for (int mi = -sidePixels; mi <= sidePixels; mi++) {
int mindex = Math.min(Math.max(mi + index, 0),
mSource.length - 1);
int pixel = mSource[mindex];
rt += (float)((pixel & 0x00ff0000) >> 16)
/ mBlurWidth;
gt += (float)((pixel & 0x0000ff00) >> 8)
/ mBlurWidth;
bt += (float)((pixel & 0x000000ff) >> 0)
/ mBlurWidth;
}
// Reassemble destination pixel.
int dpixel = (0xff000000 ) |
(((int)rt) << 16) |
(((int)gt) << 8) |
(((int)bt) << 0);
mDestination[index] = dpixel;
}
}
...
Now you implement the abstract compute() method, which either performs the blur directly or splits it into two smaller tasks. A simple array length threshold helps determine whether the work is performed or split.
protected static int sThreshold = 100000;
protected void compute() {
if (mLength < sThreshold) {
computeDirectly();
return;
}
int split = mLength / 2;
invokeAll(new ForkBlur(mSource, mStart, split, mDestination),
new ForkBlur(mSource, mStart + split, mLength - split,
mDestination));
}
If the previous methods are in a subclass of the RecursiveAction class, then setting up the task to run in a ForkJoinPool is straightforward, and involves the following steps:
Create a task that represents all of the work to be done.
// source image pixels are in src
// destination image pixels are in dst
ForkBlur fb = new ForkBlur(src, 0, src.length, dst);Create the
ForkJoinPoolthat will run the task.ForkJoinPool pool = new ForkJoinPool();
Run the task.
pool.invoke(fb);
For the full source code, including some extra code that creates the destination image file, see the example.ForkBlur
Standard Implementations
Besides using the fork/join framework to implement custom algorithms for tasks to be performed concurrently on a multiprocessor system (such as the ForkBlur.java example in the previous section), there are some generally useful features in Java SE which are already implemented using the fork/join framework. One such implementation, introduced in Java SE 8, is used by the java.util.Arrays class for its parallelSort() methods. These methods are similar to sort(), but leverage concurrency via the fork/join framework. Parallel sorting of large arrays is faster than sequential sorting when run on multiprocessor systems. However, how exactly the fork/join framework is leveraged by these methods is outside the scope of the Java Tutorials. For this information, see the Java API documentation.
Another implementation of the fork/join framework is used by methods in the java.util.streams package, which is part of Project Lambda scheduled for the Java SE 8 release. For more information, see the Lambda Expressions section.
JDK7新特性之fork/join框架的更多相关文章
- Java并发——Fork/Join框架
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...
- Java并发——Fork/Join框架与ForkJoinPool
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...
- Java 7 Fork/Join 框架
在 Java7引入的诸多新特性中,Fork/Join 框架无疑是重要的一项.JSR166旨在标准化一个实质上可扩展的框架,以将并行计算的通用工具类组织成一个类似java.util中Collection ...
- 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验
JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...
- Fork/Join 框架-设计与实现(翻译自论文《A Java Fork/Join Framework》原作者 Doug Lea)
作者简介 Dong Lea任职于纽约州立大学奥斯威戈分校(State University of New York at Oswego),他发布了第一个广泛使用的java collections框架实 ...
- 【转】Fork/Join框架测试
Fork/Join框架介绍 下面使用该框架计算0-50000000000的和,并比较普通计算方法.Fork/Join框架.Java8新特性三种计算方式的计算时间: import java.time.D ...
- 013-多线程-基础-Fork/Join框架、parallelStream讲解
一.概述 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 它同ThreadPoolExecut ...
- ☕【Java技术指南】「并发编程专题」Fork/Join框架基本使用和原理探究(基础篇)
前提概述 Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行. 我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一 ...
- JAVA中的Fork/Join框架
看了下Java Tutorials中的fork/join章节,整理下. 什么是fork/join框架 fork/join框架是ExecutorService接口的一个实现,可以帮助开发人员充分利用多核 ...
随机推荐
- c语言指针用法
一.指针 int t 定义整型变量 int *p p为指向整型数据的指针变量 int a[n] 定义整型数组a,它有n个元素 int *p[n] 定义指针数组p,它由n个指向整形数据的指针元素组成 i ...
- 解决WPF图片模糊最佳方法(绑定PixelWidth与PixelHeight)
从事WPF开发一年有余,对于图片显示模糊相信很多人都遇到过.网络上查找能得到一堆解决方法,但都是会带来其他负面影响得不到最佳效果.其实,有些图片会因为垂直分辨率/水平分辨率不同而造成在WPF界面上显示 ...
- sublime text2 中文乱码的解决办法
1.安装Sublime Package Control 在Sublime Text 2上用Ctrl+-打开控制台并在里面输入以下代码,Sublime Text 2就会自动安装Package Contr ...
- 1006. Sign In and Sign Out
#include <stdio.h> #include <algorithm> #include <iostream> #include <string.h& ...
- 论Oracle字符集“转码”过程
本文将通过实验来演示一下Oracle字符集“转码”的确认过程. 1.实验环境说明 客户端是Windows XP操作系统的SQL*Plus程序,客户端字符集是936(对应Oracle的ZHS16GBK字 ...
- Unity3d之UGUI- Image拦截Button响应事件
在编辑UI的时候Image放在Button前面就会挡掉button的响应 这种情况只需要为Image添加CanvasGroup組件 按照这个属性配置就不会挡掉后面的事件了
- 【BZOJ 2242】[SDOI2011]计算器
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- Elasticsearch从0.90(0.90.x)到1.2(1.x)API的变化-二
本文为官方文档的译文加个人理解.作者翻译时,elasticsearch(下面简称es)的版本为1.2.2. 请支持原创:http://www.cnblogs.com/donlianli/p/38367 ...
- lua通过bunlde读注意事项
把lua脚本做成bundle,加载字符串,变成lua对象: lua loadstring("name")() 注意:loadstring的问题: 无法访问全局local变量,需要改 ...
- C++11新特性:右值引用和转移构造函数
问题背景 #include <iostream> using namespace std; vector<int> doubleValues (const vector< ...