1.链接地址:

http://bailian.openjudge.cn/practice/1191/

http://poj.org/problem?id=1191

2.题目:

总时间限制:
1000ms
内存限制:
65536kB
描述
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差,其中平均值,xi为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
输入
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
输出
仅一个数,为O'(四舍五入精确到小数点后三位)。
样例输入
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
样例输出
1.633
来源
Noi 99

3.思路:

确定公式的常量

深搜+剪枝

4.代码:

 #include <iostream>
#include <cstdio>
#include <cmath> #define NUM 8 using namespace std; double res_sigma; int n;
int arr[NUM][NUM]; double all_avg; double sigma; void dfs(int x1,int y1,int x2,int y2,int sum,int cut)
{
int k,i,j;
int temp_sum,temp_avg;
double temp; if(cut == )
{
temp = (sum - all_avg) * (sum - all_avg);
if(sigma + temp < res_sigma) {res_sigma = sigma + temp;}
return;
} temp_sum = ;
for(k = y1; k < y2; ++k)
{
for(j = x1; j <= x2; ++j) temp_sum += arr[k][j]; temp_avg = temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,k + ,x2,y2,sum - temp_sum,cut - );
sigma -= temp;
} temp_avg = sum - temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,y1,x2,k,temp_sum,cut - );
sigma -= temp;
} } temp_sum = ;
for(k = x1; k < x2; ++k)
{
for(i = y1; i <= y2; ++i) temp_sum += arr[i][k]; temp_avg = temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(k + ,y1,x2,y2,sum - temp_sum,cut - );
sigma -= temp;
} temp_avg = sum - temp_sum;
temp = (temp_avg - all_avg) * (temp_avg - all_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,y1,k,y2,temp_sum,cut - );
sigma -= temp;
} }
} int main()
{
//freopen("C://input.txt","r",stdin); cin >> n; int i,j; int sum = ;
for(i = ; i < NUM; ++i)
{
for(j = ; j < NUM; ++j)
{
cin >> arr[i][j];
sum += arr[i][j];
}
}
all_avg = sum * 1.0 / n; res_sigma = sum * sum * n; dfs(,,NUM - ,NUM - ,sum,n - ); cout.setf(ios::fixed);
cout.precision();
cout << sqrt(res_sigma / n) << endl; return ;
}

OpenJudge/Poj 1191 棋盘分割的更多相关文章

  1. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  2. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  3. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

  4. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  5. POJ 1191棋盘分割问题

    棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...

  6. (中等) POJ 1191 棋盘分割,DP。

    Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  7. POJ - 1191 棋盘分割 记忆递归 搜索dp+数学

    http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...

  8. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  9. POJ 1191 棋盘分割(DP)

    题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均 ...

随机推荐

  1. spring利用javamail,quartz定时发送邮件 <转>

    原文地址:spring利用javamail,quartz定时发送邮件 <转>作者:物是人非 spring提供的定时发送邮件功能,下面是一个简单的例子以供大家参考,首先从spring配置文件 ...

  2. Asp.net 用 Graphics 统计图(柱状图, 折线图, 扇形图)

    统计图形种类繁多, 有柱状图, 折线图, 扇形图等等, 而统计图形的绘制方法也有很多, 有Flash制作的统计图形, 有水晶报表生成统计图形, 有专门制图软件制作, 也有编程语言自己制作的:这里我们用 ...

  3. AndroidStudio快捷键汇总

    最近开始全面转向Android Studio开发了,经常要去查快捷键,索性汇总下,自己方便查找 IDE 按键 说明 F1 帮助 Alt(Option)+F1 查找文件所在目录位置 Alt(Option ...

  4. interactive_timeout

    [mysqld] interactive_timeout  交互式连接 会话1 [root@localhost ~]# mysql -umysql -p Enter password: Welcome ...

  5. PHP之open_ssl

    http://www.wapm.cn/phpdoc/zh/openssl.installation.html http://liuxufei.com/weblog/jishu/376.html dem ...

  6. 手把手教你使用UICollectionView写公司的项目

    在很多app中都有这样通用的页面,一直没有机会使用UICollectionView,只是简单的看过他的使用方法.今天公司美工出图,使用了他,并且遇到了好多的坑.记录一下过程,不确定使用的方法是不是最优 ...

  7. web service 部署

    写的不好,全当是写给自己看的吧. 公司用飞天诚信的加密狗对网站进行加密,我要部署加密狗的web service.注:web service 由加密狗公司提供. 1.新建网站dog

  8. servlet 容器,工作原理,优缺点

    转自http://blog.sina.com.cn/s/blog_b5a157500101ld71.html servlet:是以java技术为基础,应用于服务器端的程序组件,本质就是java代码,用 ...

  9. VS版本下载

    tfs2012:BVGTF-T7MVR-TP46H-9Q97G-XBXRB http://www.microsoft.com/zh-cn/download/details.aspx?id=30658 ...

  10. (转)fastdfs group通过添加硬盘扩容

    通过给group的机器添加硬盘的方式,实现某个group的扩容. fastdfs在一台服务器支持多个store_path,每个store_path指向一个存储路径.url “M00/3F/E1/oYY ...