BZOJ2299: [HAOI2011]向量
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299
题解:乱搞就可以了。。。
不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a)
然后设他们的系数分别为x1,x2,x3,x4,则有
(x1+x2)*a+(x3+x4)*b=x
(x1-x2)*b+(x3-x4)*a=y
方程ax+by=c有解的充要条件是c|gcd(a,b)
但这样并不能保证方程组有解,所以还要满足一个条件就是x1+x2与x1-x2同奇偶,34同理。
我们只要求出解的通项然后随便带两个本质不同的进去就行了。当然多一点也不会超时。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 200000+5
#define maxm 200000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)
#define mod 1000000007
#define mid ((l+r)>>1)
#define lch k<<1,l,mid
#define rch k<<1|1,mid+1,r
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return;}
exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
}
inline ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
inline bool check(ll x1,ll x2,ll x3,ll x4){return ((x1&)==(x4&))&&((x2&)==(x3&));}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int T=read();
while(T--)
{
ll a=abs(read()),b=abs(read()),x=read(),y=read(),t=gcd(a,b),x1,x2,x3,x4,c,d;bool flag=;
if(a<b)swap(a,b);
if(!a&&!b){if(!x&&!y)flag=;else flag=;}
else if(x%t||y%t)flag=;
else
{
exgcd(a,b,c,d);
a/=t;b/=t;
x1=c*(x/t);x2=d*(x/t);
x3=c*(y/t);x4=d*(y/t);
if(check(x1,x2,x3,x4)||check(x1+b,x2-a,x3,x4)||check(x1,x2,x3+b,x4-a)||check(x1+b,x2-a,x3+b,x4-a))flag=;
else flag=;
}
puts(flag?"N":"Y");
}
return ;
}
BZOJ2299: [HAOI2011]向量的更多相关文章
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- BZOJ2299 HAOI2011向量(数论)
设最后的组成为x=x0a+x1b,y=y0a+y1b.那么容易发现x0和y0奇偶性相同.x1和y1奇偶性相同.于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a ...
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1255 Solved: 575 Description 给你一 ...
- P2520 [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- 【[HAOI2011]向量】
靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...
- 牛客19985 HAOI2011向量(裴属定理,gcd)
https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...
随机推荐
- linux下MySQL 5.6源码安装
linux下MySQL 5.6源码安装 1.下载:当前mysql版本到了5.6.20 http://dev.mysql.com/downloads/mysql 选择Source Code 2.必要软件 ...
- hadoop历史服务器配置问题
作者:sdjnzqr 出处:http://www.cnblogs.com/sdjnzqr/ 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须在文章中给出原文连接 ...
- ContextLoaderListener作用详解(转)
ContextLoaderListener监听器的作用就是启动Web容器时,自动装配ApplicationContext的配置信息.因为它实现了ServletContextListener这个接口,在 ...
- 让你网页同时兼容FireFox和IE
CSS 兼容要点:DOCTYPE 影响 CSS 处理 FireFox: div 设置 margin-left, margin-right 为 auto 时已经居中, IE 不行. FireFox: b ...
- Codeforces Round #241 (Div. 2)->A. Guess a number!
A. Guess a number! time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- hdu 1879 继续畅通工程(最小生成树,基础)
题目 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include<algo ...
- java基础知识回顾之---java StringBuffer类
/* * StringBuffer:就是字符串缓冲区,线程安全. * 用于存储数据的容器. * 特点: * 1,长度的可变的. ...
- Android 调节当前Activity的屏幕亮度
调节的关键代码: WindowManager.LayoutParams layoutParams = getWindow().getAttributes(); layoutParams.screenB ...
- 此版本的 SQL Server 不支持用户实例登录标志。该连接将关闭“的解决
此版本的 SQL Server 不支持用户实例登录标志.该连接将关闭“的解决(转) 2008-10-04 13:31 错误提示:说明: 执行当前 Web 请求期间,出现未处理的异常.请检查堆栈跟踪信息 ...
- 李洪强iOS开发之【零基础学习iOS开发】【01-前言】01-开篇
从今天开始,我就开始更新[零基础学习iOS开发]这个专题.不管你是否涉足过IT领域,也不管你是理科生还是文科生,只要你对iOS开发感兴趣,都可以来阅读此专题.我尽量以通俗易懂的语言,让每个人都能够看懂 ...