BZOJ2299: [HAOI2011]向量
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299
题解:乱搞就可以了。。。
不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a)
然后设他们的系数分别为x1,x2,x3,x4,则有
(x1+x2)*a+(x3+x4)*b=x
(x1-x2)*b+(x3-x4)*a=y
方程ax+by=c有解的充要条件是c|gcd(a,b)
但这样并不能保证方程组有解,所以还要满足一个条件就是x1+x2与x1-x2同奇偶,34同理。
我们只要求出解的通项然后随便带两个本质不同的进去就行了。当然多一点也不会超时。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 200000+5 #define maxm 200000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go) #define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) #define mod 1000000007 #define mid ((l+r)>>1) #define lch k<<1,l,mid #define rch k<<1|1,mid+1,r using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return;}
exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
}
inline ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
inline bool check(ll x1,ll x2,ll x3,ll x4){return ((x1&)==(x4&))&&((x2&)==(x3&));} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); int T=read();
while(T--)
{
ll a=abs(read()),b=abs(read()),x=read(),y=read(),t=gcd(a,b),x1,x2,x3,x4,c,d;bool flag=;
if(a<b)swap(a,b);
if(!a&&!b){if(!x&&!y)flag=;else flag=;}
else if(x%t||y%t)flag=;
else
{
exgcd(a,b,c,d);
a/=t;b/=t;
x1=c*(x/t);x2=d*(x/t);
x3=c*(y/t);x4=d*(y/t);
if(check(x1,x2,x3,x4)||check(x1+b,x2-a,x3,x4)||check(x1,x2,x3+b,x4-a)||check(x1+b,x2-a,x3+b,x4-a))flag=;
else flag=;
}
puts(flag?"N":"Y");
} return ; }
BZOJ2299: [HAOI2011]向量的更多相关文章
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- BZOJ2299 HAOI2011向量(数论)
设最后的组成为x=x0a+x1b,y=y0a+y1b.那么容易发现x0和y0奇偶性相同.x1和y1奇偶性相同.于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a ...
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1255 Solved: 575 Description 给你一 ...
- P2520 [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- 【[HAOI2011]向量】
靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...
- 牛客19985 HAOI2011向量(裴属定理,gcd)
https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...
随机推荐
- Text selection in div(contenteditable) when double click
背景: 在最近项目中,碰到一个问题:有一个可编辑的div需要双击时可编辑,blur或者回车时将编辑结果保存.你可能注意到双击时,文字会被选中,可编辑区域不会focus到光标位置.考虑到兼容性问题,写了 ...
- IP地址格式控制
/// <summary> /// 验证IP格式是否输入正确 /// </summary> /// <param name="ip"></ ...
- sqlserver 类似oracle的rownum功能: row_number
select row_number() over(order by t.id ) as num,id,name from (SELECT distinct [列 0] as id ,[列 1] as ...
- xml存储图片 二进制存储图片
一.保存图片到XML文件 /// <summary> /// 保存图片到XML文件 /// </summary> private void UploadImageToXml() ...
- Cent Os 常用操作
开放端口 编辑iptables文件(/etc/sysconfig/iptables) -A INPUT -m state --state NEW -m tcp -p tcp --dport xx端口号 ...
- select count的优化
select count的优化 2011-08-02 12:01:36 分类: Oracle 一般情况下,select count语句很难避免走全表扫描,对于上百万行的表这个语句使用起来就比较吃力了, ...
- codeforces 295E Yaroslav and Points (离线操作+离散化+区间合并)
参考链接:http://blog.csdn.net/dyx404514/article/details/8817717 写的很详细,这里就不再赘述,附上我的代码. #include <iostr ...
- hdu 1376 Octal Fractions
刚开始做这题时,用的是0.75[8]=(7/8+5/64)[10]这个,但是总是WA…………无语了…… 后来看别人的解题报告,知道了另外一个就是0.75[8]=((5/8+7)/8)[10],从低位向 ...
- Ubuntu 12.04LTS 找不到eth0网卡
我的机器是DELL 14R INSPRION 7420 笔记本.试了好多方法都不行,比如这个教程: . sudo ifconfig -a //查看所有网卡现状,看eth0是否存在,在结果列表应该找不到 ...
- Mac 下 docker安装
http://www.th7.cn/system/mac/201405/56653.shtml Mac 下 docker安装 以及 处理错误Cannot connect to the Docker d ...