2013 Multi-University Training Contest 1 3-idiots
解题报告:
记录 A_i 为长度为 i 的树枝的数量,并让 A 对它本身做 FFT,得到任意选两个树枝能得到的各个和的数量。枚举第三边,
计算出所有两边之和大于第三条边的方案数,并把前两条边包含最长边的情况减掉就是答案。
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define pi acos(-1.0)
using namespace std;
const int MAX = ;
//复数结构体
struct complex{
double r,i;
complex(double R=,double I=){
r=R;i=I;
}
complex operator+(const complex &a){
return complex(r+a.r,i+a.i);
}
complex operator-(const complex &a){
return complex(r-a.r,i-a.i);
}
complex operator*(const complex &a){
return complex(r*a.r-i*a.i,r*a.i+i*a.r);
}
};
/*
*进行FFT和IFFT前的反转变换
*位置i和i的二进制反转后位置互换,(如001反转后就是100)
*len必须去2的幂
*/
void change(complex x[],int len){
int i,j,k;
for(i = , j = len>>; i <len-; i++){
if (i < j) swap(x[i],x[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j做反转类型的+1,始终i和j是反转的
k = len>>;
while (j >= k){
j -= k;
k >>= ;
}
if (j < k) j += k;
}
}
/*
*做FFT O(nLogn)
*len必须为2^n形式,不足则补0
*on=1时是DFT,on=-1时是IDFT
*/
void fft (complex x[],int len,int on){
change(x,len); //调用反转置换
for (int i=;i<=len;i<<=){//控制层次
//初始化单位复根
complex wn(cos(on**pi/i),sin(on**pi/i));
for (int j=;j<len;j+=i){
complex w(,); //初始化旋转因子
for (int k=j;k<j+i/;k++){
complex u = x[k];
complex t = w*x[k+i/];
x[k] = u+t;
x[k+i/] = u-t;
w = w*wn; //更新旋转因子
}
}
}
if (on == -){
for (int i=;i<len;i++){
x[i].r /= len;
}
}
}
complex x1[MAX];
int a[MAX/];
ll num[MAX],sum[MAX];
int main()
{
int i,j,k,len1,len2,len,t,n;
cin>>t;
while(t--){
cin>>n;
memset(num,,sizeof(num));
for (i=;i<n;i++){
cin>>a[i];
num[a[i]]++;
}
sort(a,a+n);
len1 = a[n-]+;
len = ;
while (len<*len1) len<<=;
for (i=;i<len1;i++){
x1[i] = complex(num[i],);
}
for (i=len1;i<len;i++){
x1[i] = complex(,);
}
fft(x1,len,);
for (i=;i<len;i++){
x1[i] = x1[i]*x1[i];
}
fft(x1,len,-);
for (i=;i<len;i++){
num[i] = (ll)(x1[i].r+0.5);
}
len = *a[n-];
for (i=;i<n;i++)
num[a[i]+a[i]]--;//减去自己与自己的组合
for (i=;i<=len;i++)
num[i] /= ;//考虑a+b,b+a的组合,个数/2
sum[] = ;
for (i=;i<=len;i++){
sum[i] = sum[i-]+num[i];//求前项和
}
ll cnt = ;
for (i=;i<n;i++){
cnt += sum[a[i]];//a+b<=c的个数
}
ll total = (ll)n*(n-)*(n-)/;
printf("%.7lf\n",-(double)cnt/total);
}
return ;
}
2013 Multi-University Training Contest 1 3-idiots的更多相关文章
- Integer Partition(hdu4658)2013 Multi-University Training Contest 6 整数拆分二
Integer Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- Partition(hdu4651)2013 Multi-University Training Contest 5
Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków
ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...
- Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)
Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- JSU 2013 Summer Individual Ranking Contest - 5
JSU 2013 Summer Individual Ranking Contest - 5 密码:本套题选题权归JSU所有,需要密码请联系(http://blog.csdn.net/yew1eb). ...
- HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)
Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- HDU 2018 Multi-University Training Contest 3 Problem A. Ascending Rating 【单调队列优化】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6319 Problem A. Ascending Rating Time Limit: 10000/500 ...
- 2015 Multi-University Training Contest 8 hdu 5390 tree
tree Time Limit: 8000ms Memory Limit: 262144KB This problem will be judged on HDU. Original ID: 5390 ...
- hdu 4946 2014 Multi-University Training Contest 8
Area of Mushroom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- 2016 Multi-University Training Contest 2 D. Differencia
Differencia Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tot ...
随机推荐
- 【转】使用Memcached提高.NET应用程序的性能
在应用程序运行的过程中总会有一些经常需要访问并且变化不频繁的数据,如果每次获取这些数据都需要从数据库或者外部文件系统中去读取,性能肯定会受到影响,所以通常的做法就是将这部分数据缓存起来,只要数据没有发 ...
- 可以支持jQuery1.10.1 的 fancybox 1.3.4, 並現在type為Ajax時,也可以定義窗口的大小。
官網上的 fancybox 1.3.4 太老了,不支持jQuery1.10.1,改動了一下源碼,現在可以支持了. type為Ajax時,也可以定義窗口的大小. $("#ajaxlink&qu ...
- 【转】CSS实现兼容性的渐变背景(gradient)效果
一.有点俗态的开场白 要是两年前,实现“兼容性的渐变效果”这个说法估计不会被提出来的,那个时候,说起渐变背景,想到的多半是IE的渐变滤镜,其他浏览器尚未支持,但是,在对CSS3支持日趋完善的今天,实现 ...
- 基于jquery打造的网页右侧自动收缩浮动在线客服代码
基于jquery打造的网页右侧自动收缩浮动在线QQ客服代码, 当前比较流行的一款QQ在线jquery特效代码, 代码中还带有IE6下PNG图片透明的特效,如果想研究IE6下PNG透明的同学也可以下载研 ...
- Linux&UNIX上卸载GoldenGate的方法
1. Log on to the database server (as oracle) where the GoldenGate software is installed. [root@oracl ...
- python 内置模块之logging
1.将日志直接输出到屏幕 import logging logging.debug('This is debug message') logging.info('This is info messag ...
- java dom4j解析xml用到的几个方法
1. 读取并解析XML文档: SAXReader reader = new SAXReader(); Document document = reader.read(new File(fileName ...
- 1105. Spiral Matrix (25)
This time your job is to fill a sequence of N positive integers into a spiral matrix in non-increasi ...
- 1049. Counting Ones/整数中1出现的次数(从1到n整数中1出现的次数)
The task is simple: given any positive integer N, you are supposed to count the total number of 1's ...
- 拥抱ARM妹纸第二季 之 第二次 约会需要浪漫,这么大灯泡怎么弄?
终于轮到俺的小穆出场啦.有请能让太阳也为之暗淡的小穆闪亮登场-,鼓掌吧,欢呼吧!-- ♪♪ We can burn brighter Than the sun ~~~ ♪♪ “谢谢---“ 唱的太棒啦 ...